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Abstract

The stability of a dusty plasma with sheared rotational flows is investigated. Using the fluid model together with the Bayly nonmodal

approach, the inhomogeneous partial differential equations governing short-wavelength perturbations at the center of a rotational flow

field or vortex structure are obtained. The effects of flow eccentricity, strength of the flow shear, as well as concentration of dust grains on

the stability of the perturbations are investigated numerically. It is found that flow shear can cause secondary Rayleigh–Taylor instability

of a rotational flow.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotational and sheared flows along and across the
Earth’s magnetic field are common in the ionosphere.
Being a possible source of free energy, such plasma flows
can significantly affect the dynamics and stability behavior
of the plasma (Sekar and Raghavarao, 1987; Bonnell, 1996;
Mendillo et al., 2001; Kopnin et al., 2004; Popel et al.,
2004a, b). Similarly, sheared rotational flows exist in most
toroidal magnetic confinement devices such as the toka-
mak, and they have been associated with the ubiquitous
low-frequency micro-turbulence and can strongly affect the
plasma transport properties (Tynan et al., 1992). Recently,
there have also been much interest in large-scale rotational
vortex-like structures involving sheared flows (Bonnell,
1996; Changelishvili et al., 1997; Vranjes, 1999; Chakra-
barti, 2000; Mikhailenko et al., 2002; Chen et al., 2003;
Kim et al., 2005; Siefring and Bernhardt, 2005). On the
other hand, many low-temperature plasmas in space
(Goertz, 1989; Verheest, 2000; Vranjes et al., 2003; Kopnin
et al., 2004) and the laboratory (Narihara et al., 1997;
Ostrikov et al., 2000a, b; Winter, 2000; Xu et al., 2001;

Poedts et al., 2000; Popel et al., 2004a, b; Vladimirov and
Ostrikov, 2004) often contain massive and heavily charged
dust grains. The latter cannot only modify the character-
istics of the plasma modes in corresponding dust-free
plasmas but can also give rise to new modes. Because of
charge redistribution, the presence of dusts in a plasma can
also strongly affect its collective and transport properties.
It is therefore of interest to investigate the behavior of low-
frequency perturbations in inhomogeneous low-tempera-
ture dusty plasmas. In this paper we shall study the
stability of a sheared rotational flow in a dusty plasma, in
particular, the Rayleigh–Taylor (RT) instability (Chen,
1974; Sekar and Raghavarao, 1987; Tynan et al., 1992;
Vranjes et al., 2003).

2. Basic equations

To keep the problem fairly general, we consider a low-b
ðb51Þ plasma containing electrons, ions, and negatively
charged dust grains. The external magnetic field is given by
B0 ð¼ B0ezÞ and the gravitational field by g, which can also
represent local curvature of magnetic field. The plasma is
assumed to be inhomogeneous in the x direction. In the
lower ionosphere, the electron temperature Te is much
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higher than that of the ions, and for simplicity we set the
ion temperature to zero (Verheest, 2000; Kopnin et al.,
2004; Popel et al., 2004a, b). We shall concentrate on two-
dimensional (2D) electrostatic perturbations perpendicular
to B0. In the frequency regime (ocdooooci, where ocd

and oci are the dust and ion cyclotron frequencies,
respectively) of interest, the heavy dust grains can be taken
to be immobile. We also assume that the plasma is
sufficiently rarified such that the dust charge is constant,
and that the quasi-neutral condition (Verheest, 2000; Popel
et al., 2004a, b)

neðxÞ þ ZdndðxÞ ¼ niðxÞ (1)

is satisfied in the steady as well as the perturbed states.
Here ne, ni and nd are the electron, ion, and dust densities,
respectively, and Zd is the constant dust charge.

The equations governing the behavior of the 2D RT
mode are the continuity and perpendicular (to B0)
momentum equations for electrons and ions together with
the quasi-neutral condition (1). In the drift approximation
ðdt5oci;oceÞ, the electron and ion perturbation velocities
perpendicular to the magnetic field are (Chen, 1974;
Chakrabarti et al., 1994; Vranjes, 1999; Azeem and Mirza,
2006)

v?e ¼
c

B0
ez � r?j�

cT e

eB0
ez � r? ln ne, (2)

v?i ¼
c

B0
ez � r?j�

c

B0oci
dtr?jþ Vgi, (3)

respectively, where dt ¼ qt þ ðc=B0Þez �r?j � r?, j is the
electrostatic potential, Vgi ¼ �ðg=ociÞey is the gravita-
tional, or magnetic-curvature, induced drift velocity.
Substituting expressions (2) and (3) into the continuity
equations for the electrons and ions, we obtain after some
algebra the equations for the normalize electron and ion
densities ~ne and ~ni, and the normalized potential f

dt ~ne þ kqyf ¼ 0, (4)

dtð ~ni � o�1ci r
2
?fÞ þ V giqy ~ni þ kqyf ¼ 0, (5)

where now dt ¼ qt þ ez �r?f � r?. The normalized quan-
tities are defined by f ¼ ðc=B0Þj, ~ni ¼ ni1=ni0, and
~ne ¼ ne1=ne0 ¼ ~ni=�. We have also defined � ¼ ne0=ni0,
k ¼ �qx ln ni0, and used the quasi-neutrality condition.

Linearizing Eqs. (4) and (5), one obtains the dispersion
relation for the RT mode

o2 � ð1� �Þ
kkyoci

k2
?

o� �kociV gi

k2
y

k2
?

¼ 0 (6)

in a dusty plasma. The corresponding instability condition
for the 2D linear RT mode is then

gk4
k2o2

cið1� �Þ
2

4�k2
?

, (7)

which reduces to the well-known condition gk40 for the
RT instability in a simple two-component plasma. Thus,

the addition of charged dust grains into a plasma can
stabilize the RT instability. One can also easily show that
the coupled nonlinear equations (4) and (5) admit quasi-
stationary vortex solutions (Vranjes et al., 2003; Chen
et al., 2003).

3. Derivation of the governing equation

Here, we are interested in flow-shear excited short-
wavelength RT modes at the center of a vortex-like
structure in a dusty plasma. Such an instability is referred
to as a secondary instability by Chakrabarti (2000), since
the background rotational motion or vortex may also have
been caused by a similar, but of longer wavelength, RT
instability.
In the presence of shear, a vortex-like rigidly rotating

flow assumes an elliptic structural topology (Bayly, 1986;
Sekar and Raghavarao, 1987). One can then approximate
the 2D flow potential by (Bayly, 1986; Chakrabarti, 2000)

fvðx; yÞ ¼
O
2

x2

s
þ sy2

� �
, (8)

where O is the rotation frequency and s is the eccentricity.
The effective potential associated with the shear flow is
fs ¼ V 0?0x2=2, so that the total potential is fðx; yÞ ¼
fvðx; yÞ þ fsðx; yÞ þ

~fðx; yÞ.
From Eqs. (4) and (5), we obtain for ~f and ~ni

ðqt þ V 00?0xqy � OsyqxÞ ~ni þ �kqy
~f ¼ 0, (9)

ðqt þ V 00?0xqy � OsyqxÞ ~ni �
1

oci
r2
?
~f

� �
þ kqy

~fþ Vgiqy ~ni ¼ 0, ð10Þ

where V 00?0 ¼ V 0?0 þ O=s. It should be noted that the
potentials associated with flow rotation and shear are space
dependent. For simplicity, hereafter the tilde sign in ~f and
~ni shall be dropped.
One can solve the inhomogeneous equations (9) and (10)

using the Bayly’s nonmodal method of variable separation
(Bayly, 1986; Chakrabarti, 2000). Accordingly, we set

½fðr; tÞ; nðr; tÞ� ¼ ½fðtÞ; nðtÞ� expðik?ðtÞ � rÞ, (11)

so that

dtkxðtÞ þ V 00?0kyðtÞ ¼ 0, (12)

dtkyðtÞ � OskxðtÞ ¼ 0, (13)

dtnðtÞ þ i�kkyðtÞfðtÞ ¼ 0, (14)

dt nðtÞ þ
k2
ðtÞfðtÞ
oci

� �
þ ikyðtÞV ginðtÞ þ ikyðtÞkfðtÞ ¼ 0, (15)

where dt now denotes the simple derivative.
From Eqs. (12) and (13), we obtain for the wave

numbers

kxðtÞ ¼ k0 sinðOtþ y0Þ,
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