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Abstract

We investigate a planetary model in spherical symmetry, which consists of a solid core and an envelope of ideal and isothermal gas,

embedded in a gaseous nebula. The model equations describe equilibrium states of the envelope. So far, no analytical expressions for

their solutions exist, but of course, numerical results have been computed. The point of critical mass, above which no more static

solutions for the envelope exist, could not be determined analytically until now. We derive explicit formulas for the core mass and the gas

density at the core surface, for the point of critical mass. The critical core mass is also an indicator for the ability of a core to keep its

envelope when the surrounding nebula is removed, because at this point, the core’s influence extends up to the outer boundary at the Hill

radius.
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0. Introduction

In recent years, planet formation has raised a lot of new
questions due to observational advances like the discovery
of extra-solar gas giants. In the nucleated instability
hypothesis, gas envelopes are formed around planetary
cores, which in turn are built up by accretion of km-sized
solid bodies. The envelope structure has been investigated
with hydrostatic models, e.g. by Ikoma et al. (2001),
Mizuno (1980), Papaloizou and Terquem (1999), Steven-
son (1982), Wuchterl (1993). There was found an upper
mass limit for static envelopes—the critical mass—above
which no static solutions exist for given nebula conditions.
The dependence of this critical mass on nebula conditions
or material properties (opacities) is a quite complex
problem. In the isothermal idealization used in this article,
we can make an analytical approach, giving us deeper
insights into the basic features of core–envelope structures
and especially the critical mass.

As there are several definitions of the critical mass and
the respective critical core mass (CCM) (cf. Wuchterl,
1991), we have to specify what we mean with ‘‘critical
mass’’. We follow the definition introduced by Mizuno
(1980) where the CCM is defined as the first maximum of
McðMtotÞ. For a given total mass M tot an eigenvalue
problem is solved, giving the respective core mass Mc. Out
of a series of increasing total masses a relation McðMtotÞ

arises. If this relation has a maximum, a contradiction
occurs. Seen as a quasi-static time evolution, the core mass
is a constantly growing structure but the maximum shows
that there is no static solution for a core mass above the
maximum, so this core mass is called the critical one after
Mizuno (1980), hereafter called ‘‘classical’’ CCM. This
definition makes no statements about the further evolution
of a critical configuration, only the static possibilities are
ruled out. It should be noted that the described procedure
to get the CCM is done for fixed nebula parameters, i.e. for
given outer density and temperature. This fact leads to
another description of the phenomenon, also used in this
article (cf. Fig. 1), presenting a manifold of possible static
core–envelope structures in a parameter set of core mass
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Mc and gas density (or pressure) at the core surface rcs
(Broeg, 2006; Pečnik and Wuchterl, 2005). In this descrip-
tion we find the point of CCM if we fix the outer
temperature and follow a line of constant outer density in
the direction of increasing total mass. We will reach at least
one maximum in the core mass, corresponding exactly to
the classical CCM. A nice visualization how the McðM totÞ-
plot can be understood as a projection out of the manifold
is shown in Broeg (2006). It shows that the CCM is closely
related to the highest core mass value of the so-called
‘‘region IV’’ in the described parameter set, our point O in
Fig. 1. The direct connection to our work gives the
isothermal investigation by Pečnik and Wuchterl (2005).
Besides the local CCM, defined there as the outer density
depending classical CCM, they introduce a global CCM
which is independent of the outer density and corresponds
again to our point O. In fact this global CCM is the
classical CCM for the highest possible outer density
permitting hydrostatic equilibrium. The finding that the
classical CCM is quite independent of the outer density
(Mizuno, 1980) can be explained with the strong decrease
of the outer density for increasing core mass beyond the
global CCM, the point O, because of the strong gravita-
tional influence the core gets. So the global and classical
CCMs do not differ significantly since all outer densities
are realized in a short core mass range. But this behaviour
changes for small orbital distances (Ikoma et al., 2001) or
fully convective envelopes (Wuchterl, 1993). For small
orbital distances this happens because the above-men-
tioned fast drop in outer density beyond the point O is
slowed down due to increasing gas temperature. Naturally
the global CCM has the smallest value under all possible
CCMs with their respective nebula densities, since it is
related to the highest outer density.

Being a main assumption of this article, the isothermal
approximation has to be discussed. As all attempts to
justify this assumption involve a lot of vague estimations
about opacity, luminosity and other temperature gradient
related parameter values (e.g. Pečnik and Wuchterl, 2005),
we choose a rather pragmatic way to show the applicability
of the isothermal assumption. Clearly, for high densities
especially in the compact near core parts of the envelope,
significant temperature gradients appear. But in the
parameter range of interest for this work, i.e. for
densities up to r � 1 � 103 kgm�3 (cf. the ‘‘height’’ of the
point O in Fig. 1), we justify the approximation by
comparing our results with respective non-isothermal
investigations. Critical density (cf. Section 4.1) as well as
the global CCM (cf. Section 4.6) agrees up to a factor of 2
with the respective non-isothermal results. So the isother-
mal investigation provides more than just qualitative
answers.
For a review of the whole topic cf. Wuchterl et al. (2000),

for a detailed discussion of the critical mass cf. Wuchterl
(1991).

1. The model and its equations

Our model contains a solid, rigid core, with mass Mc and
mean density Rc, so that we get the core radius

rc ¼

ffiffiffiffiffiffiffiffiffiffi
3Mc

4pRc

3

s
.

The envelope starts at rc with a given density rðrcÞ :¼rcs
(gas density at the core surface). To describe the mass
distribution MðrÞ and density profile rðrÞ in the envelope,
we need the following equations. The force density balance
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Fig. 1. Contour plot of envelope mass at the Hill radius, function of core mass Mc and gas density rcs at core surface. Parameters are given in the text.
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