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HIGHLIGHTS

« A novel destriping method of MODIS emissive bands is proposed.

« Spatial information extracted by the difference curvature is utilized to construct the spatially weighted parameters.
« Split Bregman iteration method is employed to optimize the proposed model.
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This paper presents a method of unidirectional total variation destriping using difference curvature in
MODIS (Moderate Resolution Imaging Spectrometer) emissive bands. First, difference curvature is uti-
lized to extract spatial information at each pixel; and the spatially weighted parameters that constructed
by extracted spatial information are incorporated into the unidirectional total variation model to adap-
tively adjust the destriping strength for achieving a better destriping result and preserving the detail
information meantime. Second, the split Bregman iteration method is employed to optimize the proposed
model. Finally, experimental results from MODIS emissive bands and comparisons with other methods
demonstrate the potential of the presented method for MODIS image destriping.
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1. Introduction

The Moderate Resolution Imaging Spectrometer (MODIS),
equipping a cross-track scanning radiometer with 36 spectral
bands ranging from visible (0.4 um) to long-wave infrared
(14.4 um), is remarkably designed to provide a wide range of
remote sensing products for better understanding Earth climate
and dynamic interactions among continent, ocean, and atmosphere
[1]. The striping effect, a well-known artifact that compromises
the radiometric integrity of collected data, commonly exists in
MODIS emissive bands, severely degrades the quality of images,
and inevitably limits the high-level applications for the normalized
difference vegetation index, land surface temperature, and so on.
Hence, it is indispensable and essential to remove the stripes
before the succeeding image processing performing.
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Quite a few studies have been done on how to remove stripe
noise to improve the quality of images, and the approaches can
be classified into several categories. The first category of destriping
method is digital filtering in transform domain [2,3]. Being charac-
teristic of periodicity, the frequency of stripe noise can be extracted
using spectral analysis and filtered with an adequate low-pass
filter or finite impulse response filter. However, some useful details
with the same characteristics to the stripes would be inevitably
filtered out, and some blurring would be brought in too.

The second category is the statistical destriping method, such as
histogram matching [4,5] and moment matching [6]. It focuses on
the statistical properties of data measured by each individual
detector. This type of methods assumes that the distribution of
each detector is identical, and the measurement of each detector
is subsequently adjusted in order to match an imposed reference
one. However, the performance of these methods is limited by
the homogeneous area assumption.

The variational methods can be classified as the third category.
These methods, proposed recently, consider the destriping
problem as an inverse problem by optimizing an energy function.
In this case, the destriping problem is to assume an image
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observation model with which we can relate the desired image to
the degraded one [7]. When striping effect is assumed to be an addi-
tive noise [8], the whole degradation model can be linearly
described as

g(xvy) :u(x7y)+s(x,y)7 (])

where s(x, y) denotes the stripe noise, including detector-to-detector
stripes, mirror-side stripes, and random stripes [9]. u(x, y) and g(x, y)
are the latent image and observed degraded image, respectively.

Moreover, the purpose of this task is to estimate the desired
image u(x,y) from a given image g(x, y) with stripe noise s(x, y).
Unfortunately, this system is underdetermined, and the solution
is not unique. In order to yield a satisfactory result, an appropriate
regularization term is introduced into the destriping model. Shen
and Zhang [7] developed a maximum-a posteriori method based
on a Huber-Markov regularization to solve destriping and inpaint-
ing problems for remote sensing images. Similarly to [7], Fehren-
bach et al. [10] introduced a variational method to remove
stationary noise in microscopy data. Viewing stripe noise as struc-
tural information, Bouali and Ladjal [11] presented a sophisticated
unidirectional total variation model to remove stripe noise in
MODIS data. Chang et al. [12] proposed a unified destriping frame-
work combining unidirectional total variation and framelet regular-
ization, in which the framelet regularization is adopted to preserve
the detail information and suppress random noise. Chang et al. [13]
went a step further and presented a joint variational framework
with unidirectional total variation and spare representation to
simultaneously destripe and denoise for remote sensing images.

In addition, some other destriping methods based on stripe
detection are not classified into the above three categories. In those
methods, stripes or defective lines are detected and restored by a
moment-matching method or interpolation. Tsai and Chen [14]
developed a destriping system involving two independent steps:
detection and mending, in which the stripes are detected by
edge-detection and line tracing, and restored by spline interpola-
tion. Jung et al. [15] investigated and proposed an effective method
to detect defective lines of the SPOT 4 SWIR image and to restore
them by interpolation or moment-matching methods depending
on the types of the defective lines.

Generally, there exist spatial property differences in the images
of different regions, such as stripe regions and nonstripe regions,
and the destriping strength should be adaptively adjusted in spa-
tial property for different areas. How to deal with the spatial prop-
erty differences is an important and challenging issue, for which
difference curvature can be used to discriminate edges from flat
and ramp areas in the images, and has been successfully adopted
in previous studies for spatially adaptive weighted parameters
construction [16,17]. In this paper, we present a method of unidi-
rectional total variation destriping using difference curvature in
MODIS emissive bands. First, difference curvature is used to extract
spatial information at each pixel, and the spatially weighted
parameters are constructed by the extracted spatial information.
Among these parameters, the one from the region with stripes will
be enforced a large weighted value to well remove stripe noise,
while a small weighted value will be assigned in the nonstripe
regions to preserve the detail information. In order to adaptively
adjust the regularization strength, the spatially weighted parame-
ters are incorporated into the unidirectional total variation model.
For the optimization process, the split Bregman iteration algo-
rithm, an efficient tool to solve ¢; term, is employed. During the
iteration, the spatially weighted parameters are updated iteratively
to maintain a more accurate and robust constraint on spatial
information.

The remainder of this paper is organized as follows. Section 2
describes the proposed model and the optimization method
addressed for destriping process. Section 3 presents some results

on synthetic and real images, and defines several indexes used to
evaluate the destriping quality. Section 4 draws the conclusions.

2. Methodology

The destriping problem is formulated as an ill-posed inverse
problem, and the total variation (TV) regularization, which has
been widely used in computer vision for image denoising [18],
image deblurring [19], and image super-resolution reconstruction
[20], is introduced to yield a better destriping result. In literature
[11], the unidirectional properties of stripe noise are fully exploited
[Fig. 1]. The gradient along the stripes [Fig. 1(b)] is slightly influ-
enced, while the gradient across the stripes [Fig. 1(c)] is seriously
affected by stripes. It is a more realistic assumption that the gradi-
ent along the stripes is more suitable for a fidelity term of the
destriping variation model, while the regularization term to pro-
cess the noise component is isolated in the vertical gradient. In
addition, an anisotropic total variation exhibits better performance
than the isotropic one for destriping task [13]. Therefore, the
destriping model has been effectively extended to the anisotropic
unidirectional total variation. Furthermore, as there are many
areas of different spatial property, the stripe noise reduction
strength applied to every pixel should be adaptively adjusted
accordingly to these areas.

Therefore, a model of unidirectional total variation destriping
using difference curvature is constructed. Comparing to [11] and
[12], a spatially weighted parameter W(x, y) is employed and uni-
fied into the unidirectional total variation to adaptively adjust the
regularization strength. The cost functional E(u) is expressed as:

E(u) = |[Vy(u—g)ll, + > Wy Vau(x,y)l;, (2)
Xy

where / is a regularization parameter that controls the trade-off
along and across the stripes. V, and V, are the derivative operators
in x and y axis, respectively; we define the direction along the
stripes as y-axis, and the direction across the stripes as x-axis. W
(x,y) denotes the spatially weighted parameter at each pixel,
which will be discussed in the next section. In formula (2), the first
¢, term is the fidelity term that constrains the difference in
the gradient between the desired image and striped image, while
the second ¢; term, named as regularization term, is applied to
remove stripes.

In this paper, our primary objective is to set a spatial information
constraint to adaptively adjust the regularization strength for
achieving better destriping results while preserving the original
detail information, and then a model of unidirectional total varia-
tion destriping using difference curvature is specifically introduced.
The flowchart of the proposed model is drawn in Fig. 2, and the
basic idea is stated as follows. Initially, difference curvature is uti-
lized to extract spatial information at each pixel, and the spatially
weighted parameter constructed by the extracted spatial informa-
tion is unified into the unidirectional total variation model to adap-
tively adjust the regularization strength. And then, the split
Bregman iteration method is adopted to optimize this model.

2.1. Spatially weighted parameter construction

Regions of different spatial property should have different reg-
ularization strength. In stripe regions, the larger regularization
strength will be enforced to well remove the stripes, while the
smaller regularization strength will be acquired to preserve the
detail information in nonstripe regions. The difference in regular-
ization strength of the proposed model can be explained by the
spatial property differences. The more differences the spatial
property have, the larger strength the regularization is, indicating
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