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h i g h l i g h t s

� Thermal radiation properties of fractional dimension are investigated.
� Energy density is calculated as a function of arbitrary fractional dimension.
� Maximum frequency factor is shown as a function of fractional dimension.
� Measurement method of fractional dimension is shown.
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a b s t r a c t

Properties of the thermal radiation from arbitrary fractional dimension are investigated. Generalized
blackbody radiation for arbitrary dimension can be obtained and the energy density is shown as a func-
tion of arbitrary dimension as well as temperature. Maximum frequency factor representing the relation
between most probable photon energy and thermal energy is shown as a function of arbitrary fractional
dimension. It is also shown how to measure the arbitrary fractional dimension of the body with thermal
radiation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Blackbody radiation has been widely used to measure the tem-
perature of a body. Stefan–Boltzmann’s law for integer dimension
was investigated [1]. Thermal radiation becomes very different
from blackbody radiation when the size of the body is reduced.
The size effect of thermal radiation was investigated in one, two,
and three dimensions [2–4]. Non-uniformity correction techniques
for infrared detector and camera to measure temperature accu-
rately were developed [5–8] and minimum resolvable temperature
was predicted in thermal imaging sensing [9]. Effective tempera-
ture was calculated for non-uniform temperature distribution
[10–12]. Fractal dimension has been investigated well in many dif-
ferent research fields such as physics, mathematics, and chaos [13–
15]. In reality, integer dimension is an ideal one, but nature shows
fractional dimension. These fractional dimensions become impor-
tant especially in low dimensional nanostructures. For instance,
nanowire having curvature can show fractional dimension which
is higher than one-dimension and thin film having surface rough-
ness can show fractional dimension which is higher than two-

dimension. Based on fractal characterization, the role of the rough
surface structure on the thermal and hydrodynamic properties in
micro-channels was evaluated using a computational fluid
dynamic simulation [16]. Heat capacity of liquid helium was calcu-
lated in a fractal dimension between two and three dimension, and
those changes were large in spite of the small variation of the frac-
tal dimension [17]. Therefore, it is important to measure the frac-
tional dimension of the body in order to understand physics
properties. There has not done any connection between fractional
dimension and thermal radiation.

In this paper, we investigate the properties of thermal radiation
from arbitrary fractional dimensions. The energy density of ther-
mal energy is increased as fractional dimension increases. Maxi-
mum frequency factor which shows the relation between most
probable photon energy and thermal energy is shown as a function
of arbitrary fractional dimension.

2. Fractional dimension

We are familiar with integer space dimensions such as one, two
and three while time is always one-dimension. However, nature
also shows fractional dimensions. These fractional dimensions
are important in low dimensional nanostructure materials, which

http://dx.doi.org/10.1016/j.infrared.2014.10.003
1350-4495/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: kim_ht7@yahoo.com (H. Kim).

Infrared Physics & Technology 67 (2014) 600–603

Contents lists available at ScienceDirect

Infrared Physics & Technology

journal homepage: www.elsevier .com/locate / infrared

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infrared.2014.10.003&domain=pdf
http://dx.doi.org/10.1016/j.infrared.2014.10.003
mailto:kim_ht7@yahoo.com
http://dx.doi.org/10.1016/j.infrared.2014.10.003
http://www.sciencedirect.com/science/journal/13504495
http://www.elsevier.com/locate/infrared


are below three-dimension. For instance, a bended wire shows
fractional dimension which is higher than one-dimension and flat
surface having surface roughness shows fractional dimension
which is higher than two-dimension.

Fractal dimension for Koch curve can be calculated as

D ¼ ln N
ln 1

S

� � ; ð1Þ

where D is the dimension, N is the number of pieces, and S is the
scaling factor. Fractals have a fractional dimension which is not
integer dimension and are self-similar in which a small portion of
a fractal looks similar to whole object. For S = 1/3, one-dimension
shows N = 3, two-dimension shows N = 9, and three-dimension
shows N = 27. The scaling factor can be any number to determine
arbitrary dimension. From Eq. (1), we can find arbitrary fractional
dimension for any given geometry.

3. Thermal radiation from integer dimension

Thermal radiation from integer dimension is well-known. For
one-dimensional blackbody radiation, the energy density is [3]

uBðTÞ ¼
2p2

3

� �
ðkBTÞ2

ðhcÞ

" #
; ð2Þ

where h is the Planck constant, c is the speed of light and kB is the
Boltzmann constant. For two-dimensional blackbody radiation, the
energy density becomes [4]

uBðTÞ ¼ 8pf½3� ðkBTÞ3

ðhcÞ2

" #
; ð3Þ

where f is the Riemann zeta function. For three-dimensional black-
body radiation, the energy density is [2]

uBðTÞ ¼
8p5

15
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From Eqs. (2)–(4), the energy density of integer space dimen-
sion is directly proportional to the total dimensional power of
the temperature whose total dimension includes space dimension
and time dimension. Space can be any dimension, but time is
always one-dimension.

4. Thermal radiation from arbitrary fractional dimension

The surface area for arbitrary dimension in Euclidean space is

SD ðRÞ ¼ 2pðDþ1Þ=2

C½ðDþ1Þ=2�R
D and the volume is VDðRÞ ¼ pD=2

C D
2þ1ð ÞR

D where D

represents the dimension and R represents the radius of Euclidean
plane. The surface area and volume are increased as the dimension
increases.

Energy density of blackbody radiation for arbitrary dimension
can be generalized as [1]

uBðD; TÞ ¼
4pD=2CðDþ 1ÞfðDþ 1Þ

CðD=2Þ
ðkBTÞDþ1

ðhcÞD

 !
; ð5Þ

where C is the gamma function, f is the Riemann zeta function and
D is the space dimension. Energy density is proportional to the
(D + 1) th power of temperature in which D represents space
dimension and one represents time dimension. From Eq. (5), the
energy density can be calculated for arbitrary dimension and tem-
perature. For D = 1, 2, and 3 in Eq. (5), we can get one-dimensional
blackbody radiation of Eq. (2), two-dimensional blackbody radia-
tion of Eq. (3), and three-dimensional blackbody radiation of Eq.
(4), respectively. Fig. 1 shows the energy density as a function of

dimension and temperature. The energy density is increased as
dimension increases. We can notice that energy density is a contin-
uous function of dimension. The energy density is also increased as
temperature increases.

The spectral radiance for arbitrary dimension can be expressed
as

Uv ¼
4pDRD

ðC½ðDþ 1Þ=2�Þ2
ðkBTÞD

ðhcÞD�1

ðhv=kBTÞD

expðhv=kBTÞ � 1
; ð6Þ

where R is the radius of Euclidean plane. Fig. 2 shows the spectral

radiance as a function of dimensionless photon energy hm
kBT

� �
for dif-

ferent dimensions. Spectral radiance is increased as dimension
increases for constant temperature. Spectral radiance depends
strongly on the fractional dimension. Fig. 3 shows the spectral radi-

ance as a function of dimensionless photon energy hm
kBT

� �
for differ-

ent temperatures in two-dimension. Spectral radiance is also
increased as temperature increases for constant dimension.

Maximum frequency which is the most probable photon fre-
quency can be found from the derivative of Eq. (6)

DxD�1

ex � 1
� xDex

ðex � 1Þ2
¼ 0; ð7Þ

where x ¼ hm
kBT represents the dimensionless photon energy in which

the photon energy is divided by thermal energy and D is the arbi-
trary dimension of the body. From Eq. (7), the maximum frequency
factor which shows the relation between the most probable photon
energy and thermal energy can be numerically found as

aðDÞ ¼ hvmax

kBT
; ð8Þ

where a depends on dimension. Eq. (8) represents generalized
Wien’s displacement law. Table 1 shows the maximum frequency
factor vs. arbitrary fractional dimension. From Table 1, we can find
that the maximum frequency factor for three-dimension,
a = 2.82144, which is well-known. Fig. 4 shows the maximum fre-
quency factor as a function of arbitrary fractional dimension. Max-
imum frequency is related to dimension as well as temperature.
Maximum frequency factor is increased as dimension increases.
The maximum frequency factor is increased almost linearly with
the dimension when the dimension increases above 4. The maxi-
mum frequency factor for high dimension can be useful in string
theory.

Arbitrary fractional dimension can also be understood by con-
sidering the number of photon of the body. The number of photon
is proportional to the Dth power of kL, (kL)D, where k is the photon
wave number, D is the arbitrary dimension and L is the length of
the body. The number of photon is proportional to (kL)1 for one-
dimension, (kL)2 for two-dimension and (kL)3 for three-dimension.

The dimension of a body can be found by measuring the maxi-
mum frequency factor as shown in Eq. (8) or Table 1. For a constant
temperature, the maximum frequency factor is increased as the
dimension of the body increases. For instance, the maximum fre-
quency is increased as the surface roughness increases. It is
expected that we can measure the fractional dimension of the
body by measuring the maximum frequency factor from thermal
radiation.

A rock’s fracture surface was determined with the use of the tri-
angular prism surface area and projective covering methods [18].
There are many different methods to measure fractional dimension
and its value depends on how to measure. Our method can be the
most universal method to measure fractional dimension with ther-
mal radiation, which can be applied to artificial as well as natural
surface.
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