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h i g h l i g h t s

" We use compressive sensing to study fusion method of infrared and visible images.
" This paper firstly proposes the fusion rule of maximum absolute of entry of sparse vector.
" The method using OMP provides better results in the condition of the same parameter setting, dictionary and fusion rule.
" The method IRdictionary_maxabsolute_OMP takes almost all the largest objective evaluations.
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a b s t r a c t

In order to obtain a more exact, reliable and better description than a single source image, we need to fuse
source images taken from different sensors to a synthetic image. This paper employs infrared and visible
images and uses the theory of compressive sensing to study image fusion method. The fusion method
based on compressive sensing theory contains three parts: overcomplete dictionary, the algorithm of
sparse vector approximation and fusion rule. This paper selects three trained overcomplete dictionaries
by K-means Singular Value Decomposition (K-SVD) including the dictionary only using patches from the
infrared images, the dictionary only using patches from the visible images and the dictionary using the
combined patches, two sparse vector approximations containing orthogonal matching pursuit and poly-
tope faces pursuit algorithms, and two fusion rules covering maximum ‘1-norm and maximum absolute
of entry of sparse vector which is firstly proposed in this paper to study twelve fusion approaches. The
experimental results show that the method using orthogonal matching pursuit can provide better fusion
results in the condition of the same parameter setting and the same dictionary and fusion rule, and the
method using the dictionary only using patches from the infrared images, the fusion rule of maximum
absolute of entry of sparse vector and orthogonal matching pursuit takes almost all the largest objective
evaluations and the best fusion quality.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, many images for one object or scene can be
acquired by multiple sensors with the technology development
of image sensors. In accordance with the natural properties of
the sensors and the approach the images are obtained, all of these
source images taken from the sensor directly contain unique infor-
mation which is usually complementary. Taking infrared and visi-
ble images studied in this paper for example, infrared images have
lower contrast and definition compared with visible images, but
visible images cannot capture targets effectively in low visibility
conditions [1,2]. The fusion of infrared and visible images can
obtain a more exact, reliable and better description than a single
source image. Therefore, we can think that image fusion is the

foundation of the analysis of multisensor images [3]. In order to
extend or enhance information about the scene, it is necessary to
develop the technology of image fusion by combining the images
captured by different sensors. Image fusion is the process of detect-
ing salient features in the source images and fusing these details to
a synthetic image. For the past few years, image fusion has been
applied widely in diverse fields, such as target detection, intelligent
surveillance, and nondestructive inspection [4–6].

All of image fusion methods developed or applied in the past
two decades can be divided into three levels: pixel-level, feature-
level, and decision-level in accordance with the stage where the
information acquired by different image sensors is fused to a syn-
thetic [7,8]. Pixel-level fusion method which combines the inde-
pendent source images into a single image, reserves most of the
information and is studied widely. Feature-level methods which
typically use features of source images (such as edges or regions)
to fuse them are usually robust to noise and misregistration. Since
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decision-level methods combine image descriptions directly, the
application field of them is limited greatly. The method proposed
in this paper belongs to pixel-level fusion. The pixel-level
approaches mainly contain two categories [9,10]: spatial domain-
based methods and transformed domain-based methods. The
simplest fusion method in spatial domain just takes the pixel-
by-pixel average of the source images. Spatial domain-based meth-
ods often lead to undesirable side effects, such as lower contrast,
blockness in the fused image [11]. In the past decades, one of the
most successful image fusion methods is by using multiscale trans-
form [12]. As an outstanding transformed domain-based method,
the image fusion method based on multiscale transform has three
basic steps [13]: (1) decompose source images into multiscale rep-
resentations with different resolutions and orientations; (2)
decompose coefficients denoting multiscale representations and
linked with the salient features of the original images are inte-
grated according to fusion rules; (3) reconstruct the fused image
by the inverse transform of the integrated multiscale coefficients.

The earliest multiscale transform for image fusion is pyramid
decomposition, for example, Laplacian pyramid [14], morphologi-
cal pyramid [15], gradient pyramid [16]. Pyramid method firstly
decomposes each source image into a series of images with differ-
ent sizes (calls pyramid) in different resolutions, and then extracts
the value in the pyramid with the highest saliency at each position
in the decomposed images, finally reconstructs the fused image
using the inverse transform of the composite images. Another mul-
tiscale transform for image fusion is wavelet transform-based
methods which use a similar scheme to the pyramid decomposi-
tion, such as discrete wavelet transform [17,18], stationary wavelet
transform [19], and dual-tree complex wavelet transform [20,21].
The principal shortcoming of these methods is that most of the
multiscale transforms are not shift invariant, which is brought by
the underlying down-sampling process. Recently, multiscale
geometry analysis has been developed and used for image fusion
to improve fusion results. Typical methods include ridgelet trans-
form [22], curvelet transform [23]. However, although different
wavelets can represent different image details, wavelets and re-
lated multiscale transform cannot extract all of the underlying
information of the source images effectively. The reason is that
the dictionary constructed by different basis functions is limited.
Decomposed coefficients of the fused image obtained by a limited
dictionary in the transformed domain may cause all the pixel val-
ues to change in the spatial domain. Consequently, in some cases
multiscale transform-based fusion methods may produce undesir-
able artifacts.

Obviously, in order to make the fused image more accurate, it is
necessary to explore a novel method to extract the underlying
information of the source images more efficiently and completely.
This paper proposes an image fusion method which is based on
the recently developed theory of compressive sensing (CS). CS the-
ory has been successfully applied in different fields of image pro-
cess or computer vision [24–27], such as image denoising, image
compression, feature extraction, and target classification. The core
of CS is the sparse representation which describes natural signals
including images by a sparse linear combination of columns of an
overcomplete dictionary. Different from a limited dictionary within
multiscale transformations, CS uses an overcomplete dictionary in
which every column is also called a signal atom. Overcompleteness
is the most prominent characteristic of the dictionary used in CS
theory. Overcompleteness denotes that the number of signal atoms
in the overcomplete dictionary is more than signal dimensions
greatly and guarantees more meaningful and complete representa-
tion of source signals than the traditional multiscale transforma-
tions [28]. CS theory reveals the coefficients corresponding to the
natural sign are sparse. Thus, Li and Yang employ the sparse coeffi-
cient vectors to give a framework of CS-based image fusion [29].

According to this framework, our method for image fusion pro-
posed in this paper contains following steps: Firstly, the overcom-
plete dictionary is created and trained by K-means Singular Value
Decomposition (K-SVD) [30]. Secondly, the source images are di-
vided into patches by sliding window which is adopted to achieve
better performance in capturing local salient features of source
images and improve the image fusion quality. Thirdly, the patches
are decomposed by the overcomplete dictionary into their corre-
sponding sparse coefficients. Fourthly, tow fusion rules are em-
ployed to combine the coefficients of the source images. Finally,
the fused image is reconstructed using the combined coefficients.

The rest of the paper is organized as follows: Section 2 presents
the basic theory of CS and K-SVD for the overcomplete dictionary
creation. In Section 3, the fusion scheme based on CS and the fusion
rules based on sparse coefficients are discussed. Experiment and
conclusion are demonstrated in Sections 4 and 5 respectively.

2. Basic theory of compressive sensing

In order to finish image fusion using CS-based method, a brief
description of CS theory is necessary. CS theory has four essential
factors. First, as mentioned above, overcompleteness is one of
major characteristics of CS. Additional important conception is
sparsity. Third, how to compute sparse coefficients denoting linear
combinations of overcomplete dictionary is a problem. Lastly, cre-
ating an overcomplete dictionary is the key step of using CS theory
in practices.

2.1. Overcomplete representation

Suppose a given signal vector y 2 Rn, and a collection of vectors
ui 2 Rn, i = 1, . . . , m, where m > n. Such collections are usually dic-
tionaries and each vector ui is an atom. Given signal y =

P
aiui

(i = 1, . . . , m) can be represented as a linear combination of atoms
in the dictionary. Different from traditional multiscale transform
basis representation, such linear combination of dictionary offers
a wider range of generating atoms [31]. Thus, this dictionary is
overcomplete and called overcomplete dictionary [32]. Overcom-
plete representation based on such dictionary can allow more flex-
ibility in signal representation and more effectiveness in signal
process [33].

Considering the atoms as the columns of overcomplete dictio-
nary U, overcomplete dictionary U = [u1, u2, . . . , um], so that
the matrix U 2 Rn�m. Linear algebra tells us that a representation
of the given signal y can be described as a coefficient vector
a = [a1, a2, . . . , am]T satisfying y = Ua. Since m > n, the problem of
overcomplete representation is undetermined. That means there
is no unique solution of the coefficients vector a. In order to obtain
unique solution, considering the impact of sparsity constraint on
this situation, CS theory can in certain circumstances generate a
sparse coefficient vector as the linear combination of overcomplete
dictionary. This coefficient vector is called sparse representation
(shown in Fig. 1).

2.2. Sparse representation and sparse vector approximation

Generally speaking, the purpose of CS theory is to solve the
problem of finding the sparsest representation possible in an over-
complete dictionary. As a measure of sparsity of a vector a, ‘0-norm
||a||0 denotes the number of non-zero entries in a. The sparsest
representation is the solution to the optimization problem [34]:

min
a
kak0 s:t: y ¼ Ua ð1Þ

In most practical situations, the above formula can be modified to
include a noise allowance [33]:
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