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a b s t r a c t

Our interest is to model the electronic transport in Quantum Well Infrared Photodetectors (QWIPs).
Standard modelling was based on self-consistent calculation of the non-uniform electric field with empir-
ical description of the electron capture (Thibaudeau et al., 1996 [17]). Realistic empirical parameters had
to be extracted from experiment, consequently purely numerical studies were not possible. Moreover,
this approach allowed only a qualitative description of transport phenomena. In order to get rid of adjust-
able parameters, we have changed for a modelling based on the microscopic description of the transport
(Jovanović et al., 2004 [11]). We have applied this modelling to the design of a variety of QWIPs. For
example, excellent agreement with experimental dark current–voltage curves for different sizes of the
barriers is demonstrated on a 8 lm detector over more than 6 orders of magnitude. The behaviour with
respect to temperature on a wide range (30–200 K) is also well reproduced on this device as well as on a
17 lm detector. Those promising results confirm that this approach can give not only a good quantitative
agreement but can also be a useful predictive tool.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this article we will present the modelling of the electronic
transport in multiquantum well structures based on semiclassical
Boltzmann-like equations [10]. In our previous modelling, the
main empirical parameter was the capture probability [17]. How-
ever the values were difficult to extract from experiment and the
dependency with the structure parameters remained nearly
unknown. This problem, combined with other approximations,
gave only a qualitative understanding of the physics of the elec-
tronic transport in the thermal regime, but no predictive results.
A new type of modelling, based on a fully quantum-mechanical
model, was first proposed by Harrison et al. [2,4,11,12]. This type
of modelling, without parameters based on microscopic quantum
description of the scattering from state to state, are very appealing
and have proven their efficiency to describe other types of quan-
tum structures like the quantum cascade laser (QCL) [8,16]. The
specificity of the QWIP is that the electronic transport is mediated
by extended states in the conduction band as opposed to QCLs in
which it is mediated by localized states. Up to now, very few work
has been devoted to the validation of this approach for QWIPs.

Thanks to the long experience of III–V Lab in the QWIPs field, we
have been able to compare numerical results and experimental

data for a large number of quantum designs. Our conclusion is that
this approach can describe quantitatively the current in QWIPs
within a large range of external parameters (temperature and bias)
excepted at very low temperatures and voltage. The first part of
this work is dedicated to the presentation of the modelling, the
second one to the convergence study and the last one to the com-
parison with experiment in dark condition (no incoming photons).

2. Theory

The general form of the structures we want to study consists in a
large number of periods (typically >20) containing different mate-
rial layers. For sake of simplicity, the modelling we present here is
periodic. We have thus to keep in mind that there will be no finite
size effects. In particular the effect of the injection contact is not
accounted for. This approximation suits well to structures like QCLs
or QCDs, where the field is homogeneous. However, in the case of
QWIPs, it is well known that it is not the case [17]. In fact, the inho-
mogeneity is not so important in dark conditions when the number
of periods is large enough. In our test structure, the period is simply
a well of GaAs and a barrier of AlxGa1�xAs. The implementation of
the model has four main steps that we will explain in the following:
(i) Wavefunctions calculation, (ii) Wavefunctions selection, (iii)
Scattering rates, (iv) Rate equation solving and current calculation.
Since step three requires the knowledge of the population which is
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a result of step four, we perform a self-consistent calculation on
those two steps.

(i) Wavefunction calculation: The hamiltonian of the conduc-
tion band is solved in the envelope function approximation
and we take into account its non parabolicity as reported
in Ref. [15].
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with Ep the Kane energy as in Ref. [15], m0 the electro mass, Eg

the gap and Dso the split-off energy. /i(z) is the envelope
function along the growth axis for k// = 0.
The resolution of this equation above the barriers would re-
quire a continuum of electron states. For a finite calculation,
we need to discretize the continuum. This is straightfor-
wardly done by using hard wall boundary conditions (see
Fig. 1) which consist in solving the Eq. (2) for a finite number
of periods N surrounded by two barriers conveniently chosen.
When N increases the calculation becomes more precise and
time consuming.
Due to the periodicity of the structure, the wavefunctions
obey a spatial and energy translation symmetry: if /i(z) is a
solution with energy ei then for any p relative integer
/i(z + pD) should be a solution at the energy ei + pDV, with
D the length of one period and DV the potential drop across
one period. Thus a finite number of wavefunctions can de-
scribe the whole structure by applying this translation sym-
metry, which greatly simplifies the problem. This symmetry
is broken in the method for solving the Schrödinger equation
by the use of hard boundaries. This implies that if we want to
ensure periodic boundary condition, we have to impose the
symmetry. The states of the central period are the closer to
the ideal periodic case. We will take them as our finite set
of wavefunctions mentioned above (see Fig. 1).

(ii) Wavefunctions selection: In order to select the states of the
central period, we have to assign each eigenstate solution of
the hard wall boundary condition to its dedicated period. For
bound eigenstates, it is easy to do, by calculating the mean
position zi

mean of the wavefunction i: the wavefunction is

selected if zi
mean is in the central period. A wavefunction

belongs to a bound state if the standard deviation of its posi-
tion is smaller than a well chosen value. For the other states,
named continuum states, it is not so straightforward, as they
are not confined at a defined position. Jovanovic et al. [12]
use the overlap of the continuum wavefunction with the
period to select the states. We prefer another criterion,
which is more robust for homogeneous field: we calculate
the crossing point, solution of ei = VBC(zcross) as illustrated in
Fig. 1. If zcross is in the central period we consider that the
continuum wavefunction belongs to this period.

(iii) Scattering rates: Knowing the available electronic states we
can now address the dynamics of carriers. In this model the
transport is dominated by incoherent scattering, so we can
use semiclassical Boltzmann-like equation [10]: transport
is controlled by scattering occurring between eigenstates.
For each eigenstate we can write a rate equation as

dni

dt
¼
X

j

Cjiðnj;niÞ � Cijðni;njÞ ð4Þ

with Cij(nj, ni) the total scattering rate from state i to state j. j
and
i run over all states of the structure. The total scattering rate
is defined as:
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The scattering rate Cscatt
i;j ðni;njÞ is calculated with the Fermi’s golden

rule, and we assume thermalised carrier distribution in each sub-
band [7,9]. As a result only the populations of the subbands enter
the balance rate equations. Indeed individual k-space scattering
mechanism are averaged on each subband thanks to the use of
the Fermi–Dirac statistics f ðE; TeÞ ¼ 1
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at an electronic tempera-

ture Te. Because of the use of the Fermi–Dirac statistics, the rate
Cscatt

i;j depends on the population of the initial and final subbands
ni and nj trough their Fermi-level, li and lj:
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p�h2 is the 2 D density of state i. Wavefunctions are calculated

by taking into account the non parabolicity, so that m�i are not con-
stant (see Eq. (3)), but we discard this dependency for the calcula-
tion of the rate Cscatt

i;j and the calculation of the Fermi-level and
use a constant m�i taken to be the average value of m⁄(e, z):

m�i ¼
Z þ1

�1
/iðzÞ
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With this approach we can describe the scattering of the electrons
by LO-phonon emission and absorption, LA-phonon emission and
absorption, alloy disorder, ionized impurities, interface roughness
and photon emission and absorption. However in this article ion-
ized impurities are not calculated since it is time consuming and
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Fig. 1. Example of potential used for solving the Schrödinger equation (sample
LWD, 5 periods, voltage/period = 0.04 V) and the wavefunctions associated (we
have plotted 5j/i(z)j2 + ei for the sake of clarity). The vertical lines show the central
period. The dark points show how the extended states are sorted by period.
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