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Abstract

A number of new fundamental problems expanding Vasiliev’s and Tarkhov’s methodology worked out for neural network models
constructed on the basis of differential equations and other data has been stated and solved in this paper. The possibility of extending
the parameter range in the same neural network model without loss of accuracy was studied. The influence of the new approach to
choosing test points and using heterogeneous complementary data on the solution accuracy was analyzed.

The additional conditions in equation form derived from the asymptotic decomposition were used apart from the point data. The
classical and non-classical definitions of the problem were compared by entering a parameter into the complementary data. A new
sampling scheme of test point choice at different stages of minimization (the procedure of test point regeneration) under various
initial conditions was investigated. A way of combining two approaches (classical and neural network) based on the Adams PECE
method was considered.
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1. Introduction

A methodology of designing neural network models
from differential equations or other data (boundary
conditions, measurements, etc.) developed by the St.
Petersburg Polytechnic University professors Vasiliev
and Tarkhov [3] allows solving complex and ill-posed
problems of mathematical physics [4–7]. Those show-
ing the most promise are the parameterized neural
network models including one or several problem
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parameters as input variables [6–8] and allowing to si-
multaneously solve a family of problems with common
parameters.

This paper raises and solves some new fundamental
questions using a simple modeling task as an example.

First, we studied the possibility of extending the pa-
rameter variation range within a single neural network
model without loss of accuracy, i.e. without increasing
the pool of simultaneously solved tasks.

Second, we investigated how the new approach to
choosing test points that we called a special test point
regeneration influences solution accuracy.

Third, we continued the study in ref. [3] aimed at
refining the solution through the use of heterogeneous
complementary data. This is point data of the sought-for
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function, including the inaccurate data, which is often
the case with real models.

The novel nature of the approach we have adopted
is, compared with previous studies [3], that the above-
mentioned point data was obtained by an intention-
ally inaccurate numerical method. Additionally, comple-
mentary conditions that are equations obtained through
asymptotic decompositions are used along with the point
data.

To answer the questions listed above, there was a
good reason to primarily consider a simplest modeling
problem with an analytical solution that the constructed
approximate solutions could be compared to, and then
objectively estimate the obtained results.

For this modeling task we chose a stiff first-order dif-
ferential equation [1]. Studies [2–8] give reason to as-
sume that the conclusions from the comparative analysis
of the studied methods and algorithms remain valid for
more complex tasks, including the problems of math-
ematical physics; so taking such a simple problem is
justified.

Introducing a parameter into the complementary data
of the problem (expressed through an equation) allows,
in particular, to compare the classical and the non-
classical statements of the problem. In the latter case,
the conditions are imposed on the sought-for function
outside the domain chosen for the solution. The natural
asymptotic behavior of the studied problem is used as a
starting point for such a condition. An approximate solu-
tion of the problem obtained through one of the classical
methods serves as the inaccurate complementary point
data.

A neural network consolidates the information both in
data and equation forms using the minimizing functional
reflecting the quality of a model. Additionally, in this pa-
per we studied a new system of choosing test points at
different stages of minimization (the test point regener-
ation procedure) for different types of input conditions.

2. Neural network models with complementary data

The problems that are commonly difficult to solve by
classical explicit methods or require a lot of iterations are
particularly interesting. Among the ordinary differential
equations (DEs) these are stiff ones [1].

Ref. [1] deals with a classical example of a stiff
equation

y′ = −50(y − cos x) (1)

with an initial condition y(0) = 0.
When this problem is solved by the explicit Euler

method, a critical value of the grid step equal to 2/50

occurs, above which the approximate solution becomes
unstable with large variations (Fig. 1, а). At the same
time, the error appears to be too large for a smaller step.

We shall focus on a generalized parameterized
problem

y′ = −α(y − cos x), (2)

y(0) = 0,

where α ∈ [5, 50] orα ∈ [0.5, 50], x ∈ [0, 1].
The problem is stiff for the variable x in the vicinity

of 0, which governs the choice of the proper intervals.
Test runs showed that the quality of the neural network
solution is also preserved for wider intervals. The prob-
lem is solved for all examined values of the parameter
α. Notice that these intervals of parameter variation are
sufficiently wider than those discussed in refs. [6,8].

An approximate solution is sought in the form of an
output of an artificial neural network of the given archi-
tecture:

y(x) =
n∑

i=1

civ(x, α, ai),

whose weights {ci, ai}n
i=1 are determined when minimiz-

ing the error functional
m∑

j=1

(y′(ξ j ) − F (ξ j, y(ξ j ), α j ))
2 + δy2(0),

and for our case, F(x, y, α) = –α(y – cosx).
Test points (ξ j, α j ) are chosen to be random and dis-

tributed uniformly over the examined intervals of varia-
tion of the value x and the parameter α; their choice is
repeated after several (3–5) iterations of the optimization
algorithm. We shall define a new random choice of test
points at some step as test point regeneration.

The quality of the obtained solution is assessed from
the exact analytical solution of Eq. (2) with an initial
condition y(0) = 0, which takes the form

y(x, α) = α2(cos x − exp(−αx)) + α sin x

α2 + 1
. (3)

In the present work, we have examined two types of
models corresponding to various basic functions with the
varying number of neurons in the network. The first case
involved choosing universal sigmoids in the form

th[a(x − d )]th[a1(α − d1)],

and the second one asymmetric Gaussians in the form

x exp[−a(x − d )2] exp[−a1(α − d1)
2]

that were known to satisfy the initial condition.
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