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Abstract 

The aim of this work is to compare different marking strategies, their influence on the work of adaptive algorithms with 
a posteriori error control for plane elasticity problems. The error control was performed using a functional error majorant. 
The implemented adaptive algorithms were based on the functional error majorant with no symmetry limitation on the free 
tensor, computed using the zero-order Raviart–Thomas approximations on triangular meshes. The four most commonly used 
element-marking criteria were used in adaptation. Numerical results for several plane-strain problems have been presented, 
including the case of different materials and geometry. A comprehensive analysis of the obtained results was given. 
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1. Introduction 

The paper discusses functional a posteriori error es- 
timates for two-dimensional problems of linear elastic- 
ity theory. These estimates were first studied numeri- 
cally in Ref. [1] . They were initially derived based on 

the relations of the duality theory of calculus of vari- 
ations; this method was suggested in Ref. [2] . Later, 
Monograph [3] obtained the same estimates using the 
transformation of integral identities. Ref. [1] also dis- 
cussed particular cases of estimates for a number of 
two-dimensional problems: plane strain, plane stress 
and axisymmetrical case. 

The literature describes two types of functional er- 
ror majorants for these problems: those explicitly and 
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implicitly taking into account the symmetry of the free 
tensor that is a part of the estimate. Estimates of the 
second type allow using special finite elements de- 
veloped for mixed methods. This approach was first 
suggested and implemented in Ref. [4] . 

Numerical studies of the functional approach to 

solving plane problems of linear elasticity theory were 
carried out by several authors. For example, Ref. 
[1] cites two examples of solving plane-strain prob- 
lems with adapting the computational mesh in com- 
plexly shaped areas; in this case, the ‘symmetrical’ 
estimate and, respectively, the continuous piecewise- 
linear approximation of the finite-element method 

are used. The efficiency index of the estimate (i.e., 
the ratio of the error majorant to the estimated 

norm, the optimal index value is unity) increased, ac- 
cording to the results. The study [4] demonstrated 

that error overestimation increases for quadrilateral 
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finite-element meshes: for some problems, the effi- 
ciency index exceeds the optimal value by about an 

order of magnitude on a mesh containing a total of 
several thousands of nodes. Refs. [4,5] used the zero- 
order Raviart–Thomas approximation and the Arnold–
Boffi–Falk approximation with two additional degrees 
of freedom on each element for computing the func- 
tional majorants on nested quadrilateral meshes with- 
out adaptation. Aside from that, Ref. [6] studied the 
main theoretical properties and the aspects of prac- 
tically implementing both types of functional a pos- 
teriori estimates, and listed the numerical results ob- 
tained by the adaptive algorithms for solving plane- 
strain problems. The theorems on the computational 
properties of the estimates and the corresponding er- 
ror indicators have been formulated and proved. 

The goal of this study is to perform a comparative 
analysis of various methods for selecting the elements 
for splitting (element marking) and the influence of 
these methods on the output of the mesh adaptation al- 
gorithm (the adaptive algorithm). Effectively, the study 

continues the research in [6] and takes as a basis some 
ideas from Monograph [7] . 

2. Problem setting 

A plane problem of linear elasticity theory in the 
�⊂ R 

2 region with a Lipschitz -continuous boundary 

B consisting of two parts B 1 and B 2 has the form ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

σ = Lε(u) in �

Divσ + f = 0 in �

u = u 0 at B 1 

σn = F at B 2 

, (1) 

where Div is the tensor divergence. 
The unknown is a vector displacement field u ( x 1 , x 2 ) 

through which the strain tensor 

ε(u) = 

1 

2 

(∇u + (∇u) T 
)

and the stress tensor σ are expressed. 
The body force vector 

f ∈ L 2 (�, R 

2 ) = L 2 (�) × L 2 (�) , 

the normal stresses F ∈ L 2 ( B 2 ,R 

2 ) on a part of 
the boundary B 2 , and also the displacements u 0 ∈ 

W 

1 
2 ( �,R 

2 ) at B 1 are given. The Lebesgue space L 2 

is a space of square-integrable functions. The Sobolev 

space W 

1 
2 is a space of functions from L 2 whose gen- 

eralized derivatives also belong to L 2 . The vector n is 
the unit normal to B 2 , L is the elastic constant tensor. 

It is assumed that there are positive constants λ1 and 

λ2 for the tensor L , such that 

λ2 
1 | ε | 2 ≤ Lε : ε ≤ λ2 

2 | ε | 2 (2) 

for each tensor ε∈ M 

2×2 
sym 

, where M 

2×2 
sym 

is the space of 
symmetric second-order tensors of dimension 2. It is 
also assumed that the symmetry condition 

L i jkm 

= L jikm 

= L kmi j , L i jkm 

∈ L ∞ 

(�) , 

i, j, k, m = 1 , 2, 

where the Lebesgue space L ∞ 

( �) consists of functions 
bounded almost everywhere in �, is satisfied. 

The solution of the problem ( 1 ) is sought for in the 
generalized sense: 

Find the function u from V = u 0 + V 0 , where 
V 0 ={ w ∈ W 

1 
2 ( �, R 

2 ) | w=0 at B 1 } , satisfying the inte- 
gral relation ∫ 

�

Lε(u) : ε(w) d� = 

∫ 

�

f · wd� + 

∫ 

B 2 

F · wdB (3) 

for any w ∈ V 0 . 
Let v ∈ V be some approximate solution of the prob- 

lem ( 3 ). In order to control the accuracy of the solu- 
tion v , it is necessary to have an upper estimate for 
the energy norm 

||| u − v||| := 

(∫ 

�

Lε(u − v) : ε(u − v) d�

)1 / 2 

. 

Ref. [1] obtained for the problem ( 1 ) a functional 
error majorant: 

||| u − v||| ≤ C 

(‖ Divτ + f ‖ 2 � + 

‖ τn − F 

‖ 2 B 2 

)1 / 2 + 

+ ||| τsm 

− Lε(v ) ||| ∗ + 

C �B 1 

λ1 
‖ τsk ‖ �, (4) 

where ‖ ... ‖ � and ‖ ... ‖ B 2 are the norms in L 2 ; τ is an 

arbitrary tensor from the Hilbert space 

H = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

τ ∈ L 2 (�, M 

2×2 ) | 
Divτ ∈ L 2 (�, R 

2 ) , 

τn ∈ L 2 ( B 2 , R 

2 ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

;

τ sm 

and τ sk are the symmetric and the skew-symmetric 
parts of the tensor τ , respectively; C �B 1 is the constant 
from Korn’s inequality that can be estimated numeri- 
cally. 

The auxiliary norm in the majorant is computed by 

the formula 

||| τ || | ∗ = 

(∫ 

�

L 

−1 τ : τdx 

)1 / 2 

. 

The constant C must satisfy the inequality 
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