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a b s t r a c t

With the emergence of nanoelectronics faster and denser circuits are being produced, this largely
because the aggressive scaling to the nanometer range of the insulating film used as dielectric. Moreover,
enhancements of the electrical conductivity of nanofiller based composites can be achieved by the
incorporation of conductive nanofillers into polymer matrix. In such systems electron wave-function
penetration into the dielectric is important as it leads to undesired or desired leakage currents by
tunneling respectively. Therefore, a proper design of the electrical conductance in such structures be-
comes important in order to control accurately their performance. In this research, a model for engi-
neering the electrical conductance of resistors at nanoscale is presented. The conductance at
infinitesimal bias of nanoresistors is modeled within the framework of Landauer's tunneling which re-
sults in an exponential integral function for the total electrical conductance. Model takes the effects of
azimuthal and inclination angles between nanocontacts into account, as well as the effect of the thick-
ness of the dielectric layer. The model also unveils a U-shaped behavior of the electrical conductance as a
function of the azimuthal angle between nanocontacts. As a result, a minimal electrical conductance is
predicted when the azimuthal angle reaches 90�.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is of a great importance from both fundamental and applica-
tion point of views to understand the behavior of the electrical
conductance formed by two electrodes separated by a thin insu-
lating film; in such system if the film is sufficiently thin, electrons
can flow between the two electrodes by means of tunnel effect [1].
Ultrahigh frequency diodes ormetaleinsulatoremetal diodes (MIM
diodes) might just be the technology that allows electronics ach-
ieve the next big leap in processing speed and energy harvesting
[2e8]. The reason is that unlike Schottky diodes, MIM diodes are
not affected by parasitic capacitances because they work on the
basis of electron tunneling. Currently, an aggressive scaling of
ultrathin-gate oxide films becomes necessary as metal oxide
semiconductor field effect transistors (FETs) approach to nano-
meter regimes, for ultrathin insulators direct tunneling current will
dominate the gate leakage current and therefore the off and on-
state of the transistor [9e11]. Additionally, new research on

plastic-based flexible electronics where large volume processing
using roll-to-roll, inkjet printing or spray deposition, represent the
“electronics everywhere” trend of the future is aimed in under-
standing electron transport through organic dielectric molecules
between metallic electrodes [12e20]. Besides this, nanofiller based
composites have attracted research interest because the significant
improvement in electrical conductivity due to the addition of small
amounts of fillers in polymeric or ceramic host materials [21e25].
In such systems: if the number of nanoscale fillers per unit volume
n is large, nanofillers touch each other and the conductance is by
percolation [26,27]. Nevertheless, when n is smaller than the
percolation threshold nc, nanofillers are isolated from each other,
and the conductance could be due to hopping [28e30] or by
tunneling [30e33], depending on the existence or nonexistence of
impurity centers inside of the dielectric matrix as well as the
thickness of the insulating layer between nanofillers. Previously,
satisfactory approximations for charge transfer in metal-
einsulatoremetal structures via tunneling based on perturbation
theory or Bardeen approach [34], Non Equilibrium Green Functions
[35,36], density functional theory [37,38], local density approxi-
mation [39,40], WentzeleKramerseBrilliouin approximation
[41,42], Airy functions via transfer matrix methods [43,44] and
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Landauer theory [45,46], have so far been modeled; however all
those reported derivations have been done considering a single
dielectric bridge between the two electrodes ignoring the
geometrical aspects of the structure, which are so important in real
devices. As a result, such approximations let only predict values of
the electrical conductance per unit area making impossible to use
them so as to engineer electrical conductance by way of geomet-
rical parameters. Taking into consideration, that although in
dielectric gate and MIM diode applications the dielectric nanolayer
has awell-defined geometry and thickness; in nanocomposites, the
nanofillers are randomly oriented and distributed. Therefore, an
accurate modeling of the electrical conductance which considers
geometrical parameters such as relative orientation and position
between electrodes as well as dielectric thickness gradient to pre-
dict and engineer the electrical conductance of nanoresistors is
important for nanoelectronics and nanocomposite technology
development.

2. The proposed model

It is instructive to consider a system of two nanostructures (i.e.
two carbon nanotubes, nanorods, nanoribbons etc.) randomly
dispersed in an insulating continuum media. Fig. 1a and b shows
this situation by mean of two nanotubes overlapped and separated
a distance d respectively. Same figures also show the inclination (a)
and azimuthal (q) angles between nanotubes. Therefore, if the
distance between them is the order of some nanometers, then
through the overlapping area is accomplished the charge transfer
by tunneling between fillers. In general, the thermal conductance of
a piece of material with cross section A, length d and conductivity s

is given by

K ¼ sA
d

(1)

For the tunneling conductivity s, we use the Landauer
formalism s ¼ (2e2/h)T/R [45,46]. Evidently, la formula has the ratio
of the transmission probability divided by the reflection

probability; the factor 1/R arises from the reflected electrons
changing the chemical potential of the reservoirs. However, during
tunneling the transmission probabilities are very small [46] and the
reflection probabilities are very near to the unity, thus the
tunneling conductivity normally appears as s ¼ (2e2/h)T, where the
first term is described often as the quantum unit of the electrical
conductance, and T is the transmission probability given by
T¼ ge(�2kd); here k is the characteristic wave vector for tunneling or
the inverse decay tunneling length, d is the separation between
contacts and g is determined by the characteristics of the elec-
trodes. By applying these statements then the tunneling conduc-
tance for an infinitesimal slide of material according to equation (1)
is given by

dK ¼ g

�
2e2

h

� 
e�2kd

d

!
ð�2dÞAdk (2)

When electron tunneling is described in terms of a single
evanescent state in the insulator layer we can write the vector k in
terms of the decay rate of the wave function k0 for kjj ¼ 0 in the
barrier region in the form of k2 ¼ k20 þ k2jj , therefore by integrating
over kjj the total tunneling conductance is given by

K ¼ gk0
4p

�
2e2

h

� 
e�2k0d

d

!
A (3)

Nonetheless, in the engineering context it is important to con-
trol the electrical conductance starting from easy access parameters
during microfabrication process such as the geometrical parame-
ters d and A. At nanoscale, to control the parameter d could be
tedious and impractical because it implies to control the dielectric
film thickness below of the minimal distance between contacts to
keep the tunneling in order to obtain different conductance values.
On the other hand, to control the cross section A by increasing or
decreasing the contacts width will induce angular tunneling due to
edge effects on the electric field distribution. Therefore, the only
way to engineer the electrical conductance in equation (3) is by
altering the cross section A via the azimuthal angle between con-
tacts, this action will keep the contacts width avoiding edge effects
but will change the cross section; as a result, the electrical
conductance will be altered. Base on the above statements, in the
present analysis in order to calculate the total electrical conduc-
tance it is considered that a set of infinitesimal shunt electrical
conductances fill the space between electrodes (a shunt set of
single dielectric channels), as shown in Fig. 1c. Therefore, the
electrical conductance of one infinitesimal resistor is given by
dK ¼ s

d dA, where by analogy with equation (3), the tunneling

conductivity is s ¼ gk0
4p

�
2e2
h

�
e�2k0d.

It can be observed that the cross section A and the separation
between electrodes d are not constants, rather depend on the
azimuthal angle q and inclination angle a. Therefore, d¼ Tan(a)
x þ b and A¼Dx, here D is the nanofiller size (i.e. nanotube
diameter, electrode width, etc.), x ¼ D/Sinq and b the minimal dis-
tance between nanostructures or electrodes to start the tunneling.
After applying somemathematical artifices and by integrating dK ¼
s
d dA in terms of the x variable, the total thermal conductance is
given by

K ¼ gk0D
4pTanðaÞ

�
2e2

h

�Zx0
0

e�2k0 ½TanðaÞxþb�½2k0TanðaÞ�
2k0½TanðaÞxþ b� dx (4)

Equation (4) is the main result of the present research and it

Fig. 1. a) and b) Two nanotubes overlapped and rotated via the azimuthal (q) and the
slant (a) angles respectively, c) infinitesimal conductances filling the space between
nanocontacts, and d) real overlapped nanorods.
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