Current Applied Physics 14 (2014) 1687-1691

Contents lists available at ScienceDirect

Current Applied Physics

journal homepage: www.elsevier.com/locate/cap

Spatial variation in the electronic structures of carpetlike graphene nanoribbons and sheets

Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea

ARTICLE INFO

Article history: Received 6 July 2014 Received in revised form 27 August 2014 Accepted 28 August 2014 Available online 21 September 2014

Keywords: DFT calculations Graphene Graphene nanoribbon External electric field

ABSTRACT

Graphene, when deposited on a supporting substrate with a step edge, may be deformed in the presence of the step edges of the substrate. In this study, we have investigated a spatial variation in the local electronic structure near the step region, by performing first-principles calculations for carpetlike armchair graphene nanoribbons (C-AGNR) and two-dimensional periodic carpetlike graphene sheets (PCGS). Our results indicate no practical difference in the local density of states (LDOS) between those of flat and step regions. Interestingly, however, the PCGS shows a remarkable variation in the LDOS with an external electric field (E-field). Furthermore, we also discuss the dependence of the direction and the magnitude of the applied E-field on the spatial variation in the LDOS.

© 2014 Published by Elsevier B.V.

1. Introduction

Because of its superior chemical and physical properties, graphene has been regarded as a promising material for the use in various applications. Various methods such as mechanical exfoliation [1,2], epitaxial growth [3], and chemical vapor deposition [4,5] can be used to produce graphene. However, from the application perspective, complete realization of the potential of graphene requires comprehensive understanding of its atomic and electronic properties, considering the complexity of many factors affecting its functionalities. This demands a concerted effort on the parts of both theory and experiment.

There are many experimental and theoretical studies concerning the atomic and electronic structures of graphene deposited on many different types of substrates. Some researchers have studied the variations in the electronic structure, in particular, those that are induced by an interaction between graphene and the substrate. For example, graphene deposited on oxide substrates such as SiO₂ and Al₂O₃ has been studied extensively [6–9]. On the other hand, many researchers observed carpetlike growth of graphene, which continuously cover the terrace and the step edge of a variety of

* Corresponding authors.

supporting surfaces, such as SiC (0001) [10–12], Ru (0001) [13–19], Ir (111) [19–21] and Pt (111) [22,23]. Recently, it has been reported that the electronic structure of graphene on the substrate is strongly influenced by the morphology of the substrate (*e.g.* the terrace width and the step edge) [24]. Therefore, it is necessary to study the variations in the electronic structure of graphene influenced by the step edge of the supporting substrate. Although graphene structures with curvature were initially only of theoretical interest, they attract attention now with respect to a strain-based graphene engineering.

In this paper, we report an investigation of the spatial variations in the electronic structure of graphene induced by the step regions in the graphene using density functional theory (DFT). To analyze the effect of the step, we consider two types of atomic structures, namely graphene nanoribbon and graphene sheet. The local density of states (LDOS) of the flat and step regions in the two structures containing the step is analyzed to examine the dependence of the electronic structure on the external electric field (E-field). On comparing the LDOS of the flat and step regions, we show no practical difference in the electronic structure in both the models in the absence of the applied E-field. It is known that in the case of a flat graphene monolayer, its LDOS is not influenced by a uniform Efield. However, our results show a conspicuous variation in the LDOS when an E-field is applied to the step, especially in the graphene sheet. Besides, we examine the dependence of the electronic structure on the magnitude and direction of the E-field.

E-mail addresses: gunnkim@sejong.ac.kr (G. Kim), hong@sejong.ac.kr, suklyunh@gmail.com (S. Hong).

2. Computational methods and model structures

To investigate the variation in the electronic structure which is caused by the steps in graphene, we consider two types of model structures in this work. One is a carpetlike armchair graphene nanoribbon (C-AGNR) and the other is a periodic carpetlike graphene sheet (PCGS) which both consist of the flat and the step regions, as shown in Fig. 1. The unit cell contains 98 carbon atoms and 4 hydrogen atoms, passivated at the edge of the C-AGNR structure using the N = 49 armchair graphene nanoribbon (AGNR). On the other hand, the PCGS contained 124 carbon atoms. The width of the C-AGNR is about 60 Å while that of the PCGS is about 75 Å with a separate vacuum region of 15 Å. When graphene is adsorbed on a supporting substrate with step regions, it covers the terrace and the step edge of the substrate like a carpet on stairs. In such a situation, the electronic properties of graphene may change owing not only to the interaction with the substrate but also to the atomic structure around the step. In this work, we investigate the effect of only step regions on the electronic structure of graphene. To mimic a graphene layer formed on a substrate step, we consider the C-AGNR and the PCGS with a slope of 30°, as shown in Fig. 1. The height difference of 5 Å correspond to two atomic layer of the substrate. For example, the distances between the interlayer spacings of SiC (0001), Ru (0001), Ir (111), and Pt (111) surfaces are 2.513, 2.141, 2.216, and 2.265 Å, respectively. Taking into account the computational cost, we do not include the substrate in the simulations. Furthermore, to check the dependence of the slope, we also calculate the PCGS with a slope of 45°.

DFT calculations are performed, using generalized gradient approximation (GGA) for exchange-correlation functionals [25,26] implemented in the Vienna Ab Initio Simulation Package (VASP) [27,28]. The kinetic energy cutoff is set to 400 eV, and the electron-ion interactions are represented by projector augmented wave (PAW) potentials [29,30]. For the van der Waals (vdW) correction, we employ Grimme's DFT-D2 method [31], based on a semiempirical GGA-type theory. For the Brillouin-zone integration, we use a $(1 \times 1 \times 1)$ grid for a C-AGNR and a $(2 \times 9 \times 1)$ grid for a PCGS, respectively, in the Gamma centered scheme for geometry optimization. For DOS calculations, $(1 \times 12 \times 1)$ and $(6 \times 20 \times 1)$ grids are utilized for the C-AGNR and the PCGS, respectively. All atomic coordinates are fully optimized, with the exception of the connecting parts of the graphene structure to satisfy the boundary condition, until all Hellmann-Feynman forces are lower than 0.05 eV/Å.

Fig. 1. Optimized structures of (a) a carpetlike armchair graphene nanoribbon (C-AGNR) and (b) a periodic carpetlike graphene sheet (PCGS) layer with a slope in step regions. In the PCGS, we consider two slopes ($\theta = 30^{\circ}$ and 45°).

3. Results and discussion

3.1. Electronic structure of a carpetlike graphene nanoribbon

In the optimized C-AGNR structure, the bond lengths between neighboring carbon atoms are changed within a range -1 % to 1 %in the entire step region, compared with the C-C bond length (1.424 Å) of perfect graphene. For convenience, we divide the C-AGNR structure into three regions, as shown in Fig. 1(a). Regions A and C correspond to the flat and step regions, respectively, and region B is located in-between. In general, compression results in folding or wrinkling of graphene [32], which agrees with our result that graphene is slightly bent and a small wrinkle occurs in region B. This small wrinkle has a height of ≈ 0.19 Å.

To investigate the effect of the step, we plot the density of states (DOS) of the C-AGNR structure and compare it with that of the flat AGNR, as shown in Fig. 2(a). Black solid and red dotted curves in Fig. 2(a) represent the DOS of a flat AGNR and the C-AGNR, respectively. As seen in Fig. 2(a), there is no distinct difference between the DOS of the C-AGNR and the flat AGNR around the Fermi level (E_F), indicating the energy band gap of about 0.2 eV. This energy band gap in N = 49 AGNR is well matched with a previous report [33]. Therefore, we conclude that the electronic structure of the C-AGNR is not significantly affected by step regions. In Fig. 2(b), we show a calculated constant-current scanning tunneling microscope (STM) image in the Tersoff–Hamann scheme [34,35]. The method is an energy-integrated calculation of partial charge density in an energy window measured between E_F and a chosen energy E_c . For the image in Fig. 2(b), we choose $E = E_F - 0.5$ eV to show the spatial variation in the charge density of the C-AGNR, compared to the flat AGNR. The calculational image of the C-AGNR is not so different from that of the flat AGNR, as expected. As in previous studies [36,37], the charge density patterns like an array of crescents are shown near the edge, which are associated with the intervalley scattering [36] of graphene due to the armchair edge.

Next, the E-field dependence of the DOS is studied by applying an E-field of magnitudes of -0.4, and 0.4 eV/Å, perpendicular to the C-AGNR. Corresponding DOS modification is analyzed with respect to the field direction. Fig. 3(a)-(c) shows the E-field dependence of the LDOS of regions A, B, and C, respectively. The blue dotted and red dashed curves represent the LDOS when the E-field of strength -0.4 and 0.4 eV/Å, respectively, is applied. For comparison, the black solid curve in Fig. 3 represents the LDOS of the C-AGNR in

Fig. 2. (a) Density of states (DOS) for the flat armchair graphene nanoribbon (AGNR) and carpetlike armchair graphene nanoribbon (C-AGNR) with N = 49. Black solid and red dotted curves indicate the DOS for a perfectly flat AGNR and the C-AGNR, respectively. The Fermi level (E_F) is set to zero. (b) Simulated constant-current STM image of the C-AGNR. An energy-integrated partial charge density is calculated in an energy window between E_F –0.5 eV and E_F . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1785907

Download Persian Version:

https://daneshyari.com/article/1785907

Daneshyari.com