
Development of lattice inversion modified embedded atom method
and its applications

Xianbao Duan a, Bing Zhou b, Rong Chen b, Huamin Zhou a, Yanwei Wen a, **, Bin Shan a, c, *

a State Key Laboratory of Materials Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of
Science and Technology, Wuhan 430074, Hubei, People's Republic of China
b State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of
Science and Technology, Wuhan 430074, Hubei, People's Republic of China
c Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

a r t i c l e i n f o

Article history:
Received 2 July 2014
Received in revised form
20 October 2014
Accepted 20 October 2014
Available online 27 October 2014

Keywords:
MEAM
Lattice inversion
Interatomic potential
Molecular dynamics

a b s t r a c t

The modified embedded atom method (MEAM) has been widely used in describing the physical prop-
erties of elemental crystals, alloys and compounds with multiple lattice structures. We report here the
development of a reliable procedure to reduce the complexity of the MEAM formalism by removing the
many-body screening function. In the proposed formulation, the interatomic pair potential is obtained by
applying Chen-M€obius lattice inversion up to fifth nearest neighbors, so that the cohesive energy curve
can be reproduced faithfully. The newly developed model (Lattice Inversion MEAM, LI-MEAM), which can
be viewed as a direct extension of the embedded atom method (EAM), no longer requires the compu-
tation of many-body screen functions and has fewer adjustable parameters than MEAM. As an illustra-
tion, we optimized the potential parameters of body centered cubic iron (bcc-Fe). The values of the
calculated physical properties agree well with experimental results. We further investigated the size-
dependent melting behavior of bcc-Fe nanoparticles (NPs) with particle size ranging from 725-atom
(~25 Å) to 22899-atom (~80 Å) using replica exchange molecular dynamics (REMD) simulations. Our
simulations show advantages of LI-MEAM in modeling of the melting process and quantitatively reveals
that the liquid skin melting (LSM) process of bcc-Fe NPs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Atomistic simulations are powerful techniques to explore the
physical properties of materials on micro scales. While simulations
with billions of atoms or millisecond time span can be achieved on
super computers nowadays [1,2], the reliability and accuracy of the
simulation results depend critically on the quality of the inter-
atomic potentials [3]. Many efforts have been devoted to the
development of more accurate and reliable potentials for
describing the interactions between specific atoms [4e8]. Among
the various models, the embedded atom method (EAM) proposed
by Daw et al. [4,5] is an elegant and powerful model for describing

atomic interactions in bulk metals. To make EAM applicable to
more complex systems, several modifications and extensions to
EAM were proposed. Johnson and Oh [9,10] developed the analyt-
ical embedded atom method by choosing appropriate analytical
forms for all the EAM functions (AEAM). Later on, Zhang, Hu and
Ouyang [11,12] added an analytical modification term to the AEAM
expression of cohesive energy and proposed a modified form of the
EAM potential. Lee and Cho [13] extended EAM by introducing a
local structural dependent prefactor with three additional param-
eters to account for the bond characteristics arising from asym-
metrical surface atoms. Shan et al. [14] reported an extension of
EAM potentials applied to alloy nanoparticles by refining the
original EAM embedding and cross-pair functionals. Some works
have also been done to improve the EAM accuracy by incorporating
the Chen-M€obius lattice inversion [15e19] method into the po-
tential fitting process [20e23]. In summary, most of these extended
models could show relatively good performance in describing the
properties of specific systems. However, due to the lack of angular
electron density dependence, EAM derived models in general lack
the transferability to apply to other none-close packed structures,
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complex oxides, or systems with partial covalent bonding charac-
teristics [3].

Aimed at improving the description of directional bonding in
solids, Baskes et al. [24e27] modified the EAM by considering three
directional partial electron densities in addition to the original
spherical component, which conceptually represent p, d, f orbitals
with different angular momentum, and put forward the modified
embedded atom method (MEAM). Due to the consideration of the
interactions from only the first nearest neighbors, it is also named
as the first nearest-neighbor MEAM (1NN MEAM). The 1NN MEAM
stands out for its universality and accuracy, and could describe the
properties of a variety of metals and alloys accurately [26,27].
However, it faces difficulties in modeling some bcc transition
metals, such as incorrect ordering among low-index surface en-
ergies and structural instability [28]. In order to mitigate these
shortcomings, Lee et al. [28] modified 1NNMEAM by extending the
interactions to the second nearest neighbors, and proposed the
second nearest-neighbor MEAM (2NN MEAM). Compared to 1NN
MEAM and previous EAM models, 2NN MEAM is a more accurate
model for describing metals, alloys and covalent systems. Much
efforts have also been made by Lee et al. [28e31] and other re-
searchers [32,33] on building up a database of potential parameters
based on 2NN MEAM.

In the practical application of MEAM (If not specified below,
MEAM refers to both 1NN MEAM and 2NN MEAM.), an additional
many-body screening function must be introduced to cutoff the
interactions from neighbors beyond first or second nearest neigh-
bors on the electron densities and pair energies, which increases
the complexity of this model [26e28]. Furthermore, there seems to
be a lack of systematic way for the determination of the parameters
associated with the many-body screening function. For pure
element, there are two parameters, Cmax and Cmin, which are
related to screening function. But the parameter set quickly grow
into a large set as a total of eight parameters of Cmax and Cmin (A-A-
B, B-B-A, A-B-A, A-B-B) are needed for binary AB alloys, and the
parameter size increase exponentially for multicomponent systems
[3,31,33]. In MEAM formalism where the interaction is limited to
first or second neighbors, the many-body screening function is
needed as a practical approach to obtain the desired accuracy. In
the present work, we report the reformulation of the MEAMmodel
by using Chen-M€obius lattice inversion method (Lattice Inversion
MEAM, LI-MEAM). By incorporating the lattice inversion technique,
we have successfully removed the many-body screening function,
which makes MEAM formalism simpler. From another point of
view, it provides transparent physics, which can be viewed as a
direct extension of EAM by considering the directional partial
electron densities. Also, the number of adjustable parameters has
been reduced. In order to validate the developed LI-MEAM model,
the potential was parameterized for body centered cubic iron (bcc-
Fe), which is a classical benchmark for many body potentials. Some
key physical properties of Fe were calculated and compared with
the results of experiments and other potential models. Further-
more, the size-dependent melting behavior of bcc-Fe nanoparticles
(NPs) was investigated using replica exchange molecular dynamics
(REMD) simulations [34,35].

2. Methodology

2.1. Chen-M€obius lattice inversion

Chen-M€obius inversion formula was first derived by Chen based
on the number theory [15] and then applied to a variety of inverse
problems in physics [36e38]. Later on, Chen et al. [17e19] devel-
oped a series of lattice inversion methods by inverting cohesion for
interatomic potential in bulk materials and adhesion for

interatomic potential across interfaces. The following is a brief
introduction to the fundamentals of Chen-M€obius lattice inversion.

Theoretically speaking, any cohesive energy for a multidimen-
sional crystal lattice can be expressed as a sum of many-body in-
teractions, which include two-body, three-body, …, n-body
interactions. If only two-body interactions are considered, the
expression for cohesive energy per atom, E, can be simplified as the
following:

E ¼ 1
2

X
jðsiÞ

F
�
rij
�
; (1)

where rij represents the lattice vector from site i to site j,FðrijÞ is the
corresponding pair potential. Considering a standard reference
structure, such as bcc or fcc,FðrijÞ can be expanded along the orders
of nearest neighbors, then Eq. (1) can be written as:

EðrÞ ¼ 1
2

X∞
m¼1

ZðmÞ
0 F

�
aðmÞ
0 r

�
; (2)

where m is the order of the nearest neighbors and ranges from 1 to
infinity, ZðmÞ

0 is the actual number ofm-th nearest neighbors, aðmÞ
0 is

the ratio of the distance ofm-th nearest neighbors to r, which is the
distance for the first nearest neighbors.

In order to apply Chen-M€obius lattice inversion to obtain pair
potential function from Eq. (2), a mathematic technique is used to
extend the original series faðmÞ

0 g to a multiplicative semi-group
faðmÞg such that, for any two integers i and j, an integer k always
exists which satisfying:

aðiÞaðjÞ ¼ aðkÞ: (3)

Then Eq. (2) can be rewritten as:

EðrÞ ¼ 1
2

X∞
m¼1

ZðmÞF
�
aðmÞr

�
; (4)

where

ZðmÞ ¼
(
Z0
�
a�1
0

h
aðmÞ

i�
aðmÞ2

n
aðmÞ
0

o
0 aðmÞ;

n
aðmÞ
0

o : (5)

Note that fZðmÞ
0 g is the actual numbers of the m-th nearest neigh-

bors, and fZðmÞg is the extended group which contains fZðmÞ
0 g with

all the additive elements equal to zeros. Eq. (4) is a standard form
available for applying Chen-M€obius lattice inversion directly to
invert the relationship between the two involved functions, saying
E(r) and FðrÞ. The inverted equation is shown as:

FðrÞ ¼ 2
X∞
m¼1

IðmÞE
�
aðmÞr

�
; (6)

where the inversion coefficient IðmÞ is given by:

X
aðmÞjaðkÞ

IðmÞZ

"
a�1

 
aðkÞ

aðmÞ

!#
¼ dk1; (7)

and dk1 is Kronecker delta function.
Fig. 1 shows the scheme about how to obtain the pair potential

from the cohesive energy by applying Chen-M€obius lattice inver-
sion. The arrows in the figure represent the determinant relation-
ships between the involved parameters or physical quantities. In
details, the cohesive energy E(x) can be obtained from experiments
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