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a b s t r a c t

This paper investigates the free vibration of protein microtubules (MTs) embedded in the cytoplasm by
using linear and nonlinear EulereBernoulli beam model based on modified strain gradient theory. The
protein microtubule is modeled as a simply support or clampedeclamped beam. Beside, the elastic
medium surrounding of MTs is modeled with Pasternak foundation. Vibration equations are obtained by
using Hamilton principle and these equations are solved according to boundary conditions. Finally the
dependency of vibration frequencies on environmental conditions, MTs size, changes of temperature and
material length scale parameters (size effects) is studied. By comparing the findings, it could be said that
the MTs’ frequency is greatly increased in the presence of cytoplasm and it is very dependent to material
length scale parameters.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cytoplasm is an important part of eukaryotic cells made up of
three types of fibers called protein microtubules, actin filaments
and intermediate filaments. Based on empirical studies, protein
microtubules are 100 times stronger than actin and intermediate
filaments and provide strength of cell. Furthermore, MTs perform
vital role in biological functions such as cell division, intracellular
transport and separation of chromosomes during mitosis. Thus to
identify the behavior of cells, understanding the mechanical char-
acterization of MTs is important. Structurally, MTs are made up of
lateral connection of long fibers named protofilaments whose
number ranges from 8 to 20 in different MTs. Protofilaments
are composed of successive bonds between a and b tubulins.
Geometrically, MTs are in the shape of hollow cylinders with outer
and inner diameters of about 25 and 15 nm, respectively, and
whose length ranges from 10 nm to 100 mm. In order to study MTs’
mechanical behavior, they are considered cylindrical with an
equivalent thickness of 2.7 nm [1e5]. Of course their effective
thickness in bending equals 1.6 nm [6]. So far, many mathematical
and empirical researches have been conducted on MTs mechanical
properties. Some researchers have studied themechanical behavior
of MTs regardless of size effects, based on classical theory of

elasticity [7e10]. Other researchers such as Tounsi et al. [11] used
higher-order shear deformation theory for analyzing the length-
dependent flexural rigidity of protein microtubules but it is
obvious that, classical theory is incapable of analyzing the effects of
length scale parameters. On the other hand, in micro and nano
scales, size effects could not be ignored. Therefore, in analyzing
these structures, higher-order continuum theories which include
size effect parameters must be used. These theories include some
theories such as: nonlocal Eringen theory [12], Cosserat theory [13],
Couple stress theory [14] and strain gradient theory [15]. By
modifying the strain gradient theory, Lam et al. [16] offered
modified strain gradient theory which includes three length scale
parameters. Using this theory, for the first time Akgöz and Civalec
[17,18] studied the buckling of MTs. Many studies have been con-
ducted to investigate size effects on MTs’ vibration, using nonlocal
EulereBernoulli beam model [19]. Civalek et al. [20] explored
linear vibration of MTs Based on nonlocal elasticity and using
EulereBernoulli beam model. Heireche et al. [21] studied MTs vi-
brations using nonlocal elasticity and Timoshenko beam model.
Shen [22] studied the nonlinear vibration of MTs by using nonlocal
shear deformable cylindrical shell model and considering the
surrounding elastic medium. He showed that, nonlinear MTs’
frequency increased in the present of Pasternak foundation.

As mentioned above, so far several studies have been conducted
to examine the vibration behavior of MTs but none of them have
used the strain gradient theory. Therefore, in this study, for the
first time, vibration behavior of MTs is examined by using strain
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gradient theory. In order to analyze the mechanical characteristics
of beam-like structures, both linear and nonlinear analyses are
needed. If the ratio of lateral deflection to beams thickness is
smaller than one, linear analysis will be used. While this ratio is
equal to or greater than one, nonlinear effects appear and therefore,
nonlinear models must be used [23,24].

In the present study, based on the modified strain gradient
theory, and by using the linear and nonlinear EulereBernoulli beam
models, effects of the surrounding medium, MTs sizes, temperature
changes and size effect parameters have been studied in the MTs
vibration. By comparing the results, it is observed that the MTs’
frequency is greatly increased in the presence of cytoplasm and it is
very dependent to material length scale parameters.

2. Strain gradient formulation of MTs nonlinear vibration
equation

Based on modified strain gradient theory the strain energy per
volume unit is given as follows [23]:

U ¼ 1
2

�
sijεij þmðsÞ

ij cðsÞijk þ hð1Þijk s
ð1Þ
ijk þ pigi

�
: (1)

In above equations, sij is the Cauchy stress tensor, εij is the strain
tensor, cij is the symmetric part of the rotation gradient tensor and gi
and hijk are the dilatation gradient vector and the deviatoric stretch
gradient tensor, respectively. Also,mij, pi and sijk are the higher-order
stresses. These tensors and vectors are defined as follows:
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1
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(6)

sij ¼ lε0kkdij þ 2mε0ij; ε
0
ij ¼ εij � aDT ; DT ¼ T � T0; (7)

mðsÞ
ij ¼ 2l22mc

ðsÞ
ij ; (8)

pi ¼ 2ml20gi; (9)

sð1Þijk ¼ 2ml21h
ð1Þ
ijk : (10)

In above equations, a is thermal expansion coefficient, ui is the
displacement vectors, qi is the infinitesimal rotation vector, T0 is
environmental temperature and l0, l1 and l2 are material length
scale parameters. Also l and m are Lame constants which are
defined as follows:

l ¼ yE
ð1þ yÞð1� 2yÞ ; m ¼ E

2ð1þ yÞ : (11)

Here, E and y are Young’s modulus and Poisson’s ratio of MTs,
respectively. Based on the modified strain gradient theory and

considering the nonlinear effects, MTs’ total potential energy U is
measured as follows:

U ¼
Z
V

�
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A
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�
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�
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(12)

In the above integral, the first part represents the potential
energy caused by external axial force P0. Indeed P0/A is the initial
axial stress in the beam assumed to have consistent distribution in
the section of the beam. Fig. 1 shows the simply supported (SeS) or
clampedeclamped (CeC) beam model for MTs embedded in the
cytoplasm in which X, Y and Z-axes represent direction along the
length, width and thickness of beam, respectively. Afterward, using
of calculus variation method, dynamic equations of MTs are pro-
duced. In the present study, the EulereBernoulli beam model is
used whose displacement components are as follows:

u1 ¼ u0 � z
vw
vx

; u2 ¼ 0; u3 ¼ wðx; tÞ: (13)

In Equation (13) u1, u2 and u3 represent displacement compo-
nents along the X, Y and Z-axes, respectively. Here u0 is the initial
displacement of the middle plane along X-axis, and z represents the
distance of each point on the beam section from the middle plane
along the Z-axis. In nonlinear analysis, in order to analyze the
geometrical nonlinearity, Von-Karman strain model has been used.
By inserting Equation (13) into Equation (2), according to the Von-
Karman strain model, the only nonzero strain is obtained as follows:

ε11 ¼ vu0
vx

þ 1
2

�
vw
vx

�2
� z

v2w
vx2

: (14)

Similarly, by inserting Equation (2) into Equations (3)e(6), the
nonzero components of the symmetric part of the rotation gradient
tensor, the dilatation gradient vector and the deviatoric stretch
gradient tensor will be obtained (for detail see Appendix A) and
replacing Equations (14) and (A.1)e(A.3) into relations (7)e(10),
the nonzero values of classic and higher-order stress tensors are
obtained (for detail see Appendix A). By replacing Equations (14)
and (A.1)e(A.7) into Equation (12), after simplification, the total
potential energy of MTs is obtained as follows:

Fig. 1. Schematics beam model of MTs inside the cytoplasm.
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