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a b s t r a c t

We present a robust and accurate numerical algorithm for calculating energy-minimizing wavelengths of
equilibrium states for diblock copolymers. The phase-field model for diblock copolymers is based on the
nonlocal CahneHilliard equation. The model consists of local and nonlocal terms associated with short-
and long-range interactions, respectively. To solve the phase-field model efficiently and accurately, we
use a linearly stabilized splitting-type scheme with a semi-implicit Fourier spectral method. To find
energy-minimizing wavelengths of equilibrium states, we take two approaches. One is to obtain an
equilibrium state from a long time simulation of the time-dependent partial differential equation with
varying periodicity and choosing the energy-minimizing wavelength. The other is to directly solve the
ordinary differential equation for the steady state. The results from these two methods are identical,
which confirms the accuracy of the proposed algorithm. We also propose a simple and powerful formula:
h ¼ L*/m, where h is the space grid size, L* is the energy-minimizing wavelength, and m is the number of
the numerical grid steps in one period of a wave. Two- and three-dimensional numerical results are
presented validating the usefulness of the formula without trial and error or ad hoc processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A diblock copolymer is a polymer consisting of a block of one
type of monomer, A, joined chemically to a block of another type of
monomer, B [1]. Below a critical temperature, the two sequences
are incompatible and the copolymer melt undergoes phase sepa-
ration [2]. This occurs on the mesoscopic scale and the observed
mesoscopic domains show periodic structures including lamellae,
spheres, cylinders, and gyroids [3]. These phase separations have
been observed experimentally [4e16], studied mathematically
[3,17e26], and simulated numerically [27e39]. For the mathe-
matical approach to phase separation, dynamic mean field theory,
based on the self-consistent field theory [40,41], has been widely
studied. In this work, we use the density functional theory pro-
posed by Ohta and Kawasaki [24]. This is dependent on the
monomer density [42], which is the minimization of a nonlocal

CahneHilliard (CH) free energy defined by an order parameter.
Here, a diblock copolymer is described by the order parameter f,
which represents the relative local density difference between two
monomers constituting the copolymer. The standard CH free en-
ergy, generally used for the modeling of phase separation [43], is
supplemented with a nonlocal term [44].

Numerical experiments are useful to predict self-assembly
structures of the diblock copolymer, containing lamellae, spheres,
and cylindrical tubes. However, because of the non-convexity of the
OhtaeKawasaki functional, the numerical results can draw the
metastable state and local minimizer. We would like to refer [45]
for the study on assessing the lowest energy state and escaping
from certain metastable states by using a spectral weighting.
Although there have been a number of numerical studies on diblock
copolymer phase separation, there has been little investigation of
the accurate calculation of the energy-minimizing wavelengths of
equilibrium states. Therefore, the main purpose of this paper is to
develop a robust and accurate numerical algorithm for calculating
the energy-minimizing wavelengths of equilibrium states in
diblock copolymers. We also propose a simple and powerful
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formula for the space grid size. This controllability of the space step
size is essential in the computational simulations for the physical
experiments.

This paper is organized as follows. In Section 2, we briefly
describe a phase field model of diblock copolymer. In Section 3, we
present a linearly stabilized splitting-type scheme with a semi-
implicit Fourier spectral method to solve the phase-field model
efficiently and accurately. In Section 4, we perform a series of nu-
merical experiments. Finally, our conclusion and discussion are
given in Section 5.

2. Mathematical model

We consider a diblock copolymer consisting of two homopoly-
mer blocks A and B. The governing equation is the OhtaeKawasaki
model [24]. Let the order parameter f(x) ¼ rA(x) � rB(x) be defined
as the difference between the local volume fractions of A and B at
the point x. The governing equation is the following partial differ-
ential equation (PDE),

vfðx; tÞ
vt

¼ D
�
F 0ðfðx; tÞÞ � ε

2Dfðx; tÞ
�
� a

�
fðx; tÞ � f

�
; (1)

where x2U3Rd (d¼ 1,2,3) is the domain, F(f) ¼ 0.25(f2�1)2 is the
Helmholtz free energy, ε is the gradient energy coefficient, a is
inversely proportional to the square of the total chain length of the
copolymer [46], and f ¼ RUfðx;0Þdx=RUdx is the total mass. We
now briefly review the derivation of Eq. (1). The free energy func-
tional is represented as the sum of two parts as εtotal ¼ εshort þ εlong.
First, εshort(f) denotes the short-range part of the free energy
functional,

3shortðfÞ :¼
Z
U

�
FðfÞ þ ε

2

2
jVfj2

�
dx:

Second, εlong(f) denotes the long-range part of the free energy
functional,

3longðfÞ :¼
a

2

Z
U

Z
U

Gðx � yÞ�fðxÞ � f
��
fðyÞ � f

�
dydx;

where G is the Green's function having the following property:
DG(x�y) ¼ �d(x�y). Here, periodic boundary conditions are
assumed and d is Dirac delta function. By taking a variational de-
rivative and letting f ¼ F0, we have,

d 3shortðfÞ
df

¼ f ðfÞ � ε
2Df; (2)

d 3longðfÞ
df

¼ a

Z
U

Gðx � yÞ�fðyÞ � f
�
dy: (3)

Next, we deduce Eq. (1) by substituting Eqs. (2) and (3) into the
evolution equation.

ft ¼ D

�
d 3shortðfÞ

df
þ d 3longðfÞ

df

�
¼ D

�
f ðfÞ � ε

2Df
�
� a

�
f� f

�
:

Note that if j satisfies �Dj ¼ f� f with the periodic boundary
condition [3], then we can represent εlong(f) as,

3longðfÞ ¼
a

2

Z
U

DxjðxÞ
�Z
U

DyGðx � yÞjðyÞdy
	

dx ¼ a

2

Z
U

jVjðxÞj2dx:

Therefore, an alternative form of the total system energy is given
as,

3totalðfÞ ¼
Z
U

�
FðfÞ þ ε

2

2
jVfj2

�
dx þ a

2

Z
U

jVjj2dx;

which we will use for the numerical evaluation of the total energy.
Differentiate the energy εtotal and the total mass

R
Ufdxwith respect

to time, and using the periodic boundary condition, we have,

d
dt

3totalðtÞ ¼ �
Z
U

jVðmþ ajÞj2dx � 0 and
d
dt

Z
U

fdx ¼ 0;

where m¼ f(f)� ε
2Df. Therefore, the total energy is non-increasing

and the total mass is conserved in time.

3. Numerical solution

In this section, we present a fully discrete scheme for the
following one-dimensional nonlocal CH equation with the periodic
boundary condition on U ¼ (0,L):

vfðx; tÞ
vt

¼ v2f ðfðx; tÞÞ
vx2

� ε
2v

4fðx; tÞ
vx4

� a
�
fðx; tÞ � f

�
: (4)

We use the equidistant grid xm ¼ (m � 1)h form ¼ 1,…,Mwhere
M is an even number and h ¼ L/M. Let fn

m be an approximation of
f(xm,nDt), where Dt is the temporal step size. We define the grid
function fn ¼ (f1

n,…,fM
n ) as a vector of grid point values. In partic-

ular, we denote the constant vector as 1 ¼ (1,…,1). The discrete
Fourier transform and its inverse transform are defined by,

bfn
p ¼

XM
m¼1

fn
me

�ixmxp ; (5)

fn
m ¼ 1

M

XM=2

p¼1�M=2

bfn
pe

ixmxp ; (6)

where xp ¼ 2p(p�1)/L. The second- and fourth-order partial de-
rivatives are,

v2f

vx2
¼ � 1

M

XM=2

p¼1�M=2

x2p
bfn
pe

ixxp ;
v4f

vx4
¼ 1

M

XM=2

p¼1�M=2

x4p
bfn
pe

ixxp :

To solve Eq. (4), we use the linearly stabilized splitting-type
scheme [47] with a semi-implicit Fourier spectral method
[33,48e50]. The linear terms are treated implicitly and the
nonlinear term is treated explicitly,

fnþ1
m � fn

m
Dt

¼ 2
v2fnþ1

m

vx2
� ε

2v
4fnþ1

m

vx4
þ v2gnm

vx2
� a

�
fnþ1
m � f

�
; (7)

where gnm ¼ f ðfn
mÞ � 2fn

m and f ¼PM
m¼1f

0
m=M. If a ¼ 0, then Eq. (7)

becomes the linear stabilized scheme for the CH equation [47]. For
the higher temporal order spectral scheme of the nonlocal CH
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