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We propose a new robust, accurate, and fast numerical method for solving the Landau—Lifshitz equation
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1. Introduction

The Landau—Lifshitz (LL) equation [1] which describes the
evolution of the magnetization in a ferromagnetic material [2,3]
plays an important role in understanding the mechanisms of
magnetization [1,4].

In one-dimensional case, many authors have studied the soliton
solution, the interaction of solitary waves, and other properties of
the solitary waves [5—7]. Also, the high-dimensional dynamics
have been researched in Refs. [8—11].

In this paper, we consider a new robust and accurate numerical
method for the Landau—Lifshitz equation with a damping term:

w = —m(X,t) x Am(x,t) — um(x,t) x [m(X,t) x Am(x,t)],

(1)

where m(x,t) = (u(x,t), v(x,t), w(x,t)) is a magnetization vector field
forx e Qand 0 < t < T. Here, u > 0 is the damping parameter and
Q c RY(d = 1,2,3) is a domain.
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In this paper, we consider the simplified LL equation which is
not magnetostatic, anistotropy, and Zeeman field. However,
we note that this simplification does not limit the proposed
analysis.

Here, we review briefly the properties of the Landau—Lifshitz
equation:

e LetE(m(t)) : = [|vm(X, t)|2dx be an energy. Here, if X = (x, y, z),
Q
then [vm(x, t)| is defined as
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as the other form of energy E(m(t)), we take a derivative om/ot as
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Integration by parts using the zero Neumann or periodic
boundary conditions gives
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By integration, we obtain the following energy equation

‘o X
E(m(t)) = E(m(0)) — 2u / / ‘m(x.,s) x Am(x,s)| dxds  (2)
0 Q

for any t > 0. Equation (2) implies that this problem has energy
dissipation property for the case u > 0 and energy conservation
property for the case u = 0.

e Equation (1) has length-preserving property, i.e.,
m(x,t)| = jm(x,0)| for any t > 0. To show this, we do scalar
multiplication of Equation (1) with m,

aa—l?-m = —(mxAm) m—pumx (mxm)-m = 0.

Then, a‘mf/at = 0, which implies |m(x, t)| is constant for all ¢
and each x, that is, jm(x,t)| = |m(x,0)|. And we assume that
m(x,0)| = 1. For a more detailed discussion of the model, see
survey articles [12—18].

Numerical method has become an important tool in the study of
dynamics of ferromagnetic materials [19—22].

Since explicit methods cause severe time step restriction for
stability [23], several methods such as the semi-analytical schemes
[23,24] and the high order Runge—Kutta algorithms [25] have been
proposed to improve their efficiency. A geometric integration
technique based on Cayley transform is applied to the time dis-
cretization of the LLG equation [26].

Through the finite element procedure [27—29], numerical so-
lutions are obtained by the extrapolation formula leading to semi-
implicit [27,29]. Otherwise, iterative techniques, as fixed-point [30]
and quasi-Newton algorithms [31], are needed.

The midpoint rule time discretization technique was applied to
Landau—Lifshitz—Gilbert equation [31]. The Gauss—Seidel projec-
tion method (GSPM) was introduced by Wang et al. [32] and the
improved GSPM was presented by Garcia—Cervera and Weinan
[33]. A successive over relaxation method was presented for the
LLG [34].

Jeong and Kim [35] suggested a Crank—Nicolson scheme which
is accurate, however, it uses an updated source term and repeatedly
performed iterations until the numerical solution converges. In this
paper, we propose a new robust fast accurate numerical method for
computations of the LL equation. The proposed method does not
need an updated source term and therefore it is fast. We also
perform three-dimensional space experiments.

The contents of this paper are as follows. In Section 2, we
describe the discrete semi-implicit finite difference scheme of the
Landau—Lifshitz equation. Numerical experiments such as a
second-order convergence test and an energy conservation

Q Q

property of the proposed scheme are given in Section 3. In Section
5, conclusions are drawn.

2. Numerical solution

For simplicity of exposition, we shall first discretize the LL
equation in one dimensional domain Q = (0,1) with a uniform grid
with the number of grid points Ny, a space step h = 1/Ny, and a time
step At = T/N. Let us denote the numerical approximation of the
solution by

u((i—0.5)h,nAt) \ T

m} = m(x;,t") = (ul, ], wl)=| v((i-0.5)h,nAt) | ,
w((i — 0.5)h, nAt)

where i = 1,..., Ny and n = 0,1,..., N Let the discrete Laplacian

operator be defined as Aym; = (m;,; — 2m; + m;_;)/h?. Then the
second-order Crank—Nicolson scheme is given as

m! —m? 1
=3 <m?+1 x Apm T+ m! x Ahm?)
M nt n+1 n+1 n 3
—i[mi x(mi x Apmy )+mi 3)

x (mf x Aym])].

We use an accurate and fast nonlinear multigrid method [36,37]
for solving the resulting discrete system of Eq. (3). To condense the
discussion we describe only the relaxation step in the multigrid
method since it is the key step in the algorithm. First, let us rewrite
Eq. (3) as

A
1 S m o (m < Am)" = 7 (4)

m"t! +%(m x Apm)
where

At At
" = m" — 5 (m x Aym)" — - #m x (m x Apym)]".

In its component form, Eq. (4) becomes

n+1 n+1
u; viApw; — wiAp;
U?Jrl + = W,‘Ahui — UiAhWi
whi! uiApv; — viApu;

n+1
vi(UApy; — viApLy) — Wi (WiApL; — wApw;)

A
| Wiwibpwi — willge) — wi(UiBpv; — vilpt) = ¢f
ui(WiApu; — uApw;) — vi (v Apw; — wibpy;)

(5)
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