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a b s t r a c t

We propose a new robust, accurate, and fast numerical method for solving the LandaueLifshitz equation
which describes the relaxation process of the magnetization distribution in ferromagnetic material. The
proposed numerical method is second-order accurate in both space and time. The approach uses the
nonlinear multigrid method for handling the nonlinearities at each time step. We perform numerical
experiments to show the efficiency and accuracy of the new algorithm on two- and three-dimensional
space. The numerical results show excellent agreements with exact analytical solutions, the second-
order accuracy in both space and time, and the energy conservation or dissipation property.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The LandaueLifshitz (LL) equation [1] which describes the
evolution of the magnetization in a ferromagnetic material [2,3]
plays an important role in understanding the mechanisms of
magnetization [1,4].

In one-dimensional case, many authors have studied the soliton
solution, the interaction of solitary waves, and other properties of
the solitary waves [5e7]. Also, the high-dimensional dynamics
have been researched in Refs. [8e11].

In this paper, we consider a new robust and accurate numerical
method for the LandaueLifshitz equation with a damping term:

vmðx; tÞ
vt

¼ �mðx; tÞ�Dmðx; tÞ�mmðx; tÞ� ½mðx; tÞ�Dmðx; tÞ�;
(1)

wherem(x,t) ¼ (u(x,t), v(x,t), w(x,t)) is a magnetization vector field
for x ˛ U and 0 < t � T. Here, m � 0 is the damping parameter and
U 3 Rd (d ¼ 1,2,3) is a domain.

In this paper, we consider the simplified LL equation which is
not magnetostatic, anistotropy, and Zeeman field. However,
we note that this simplification does not limit the proposed
analysis.

Here, we review briefly the properties of the LandaueLifshitz
equation:

� Let EðmðtÞÞ :¼ R
U

jVmðx; tÞj2dx be an energy. Here, if x¼ (x, y, z),

then jVmðx; tÞj is defined as

�����Vmðx; tÞ
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����vmðx; tÞ
vx

����2 þ ����vmðx; tÞ
vy

����2 þ ����vmðx; tÞ
vz

����2
s

;

where vmðx;tÞ
vx ¼ vuðx;tÞ

vx iþ vvðx;tÞ
vx jþ vwðx;tÞ

vx k; and so on. To represent it
as the other form of energy E(m(t)), we take a derivative vm/vt as

vEðmðtÞÞ
vt

¼
Z
U

 
2
vm
vx

$
v2m
vtvx

þ 2
vm
vy

$
v2m
vtvy

þ 2
vm
vz

$
v2m
vtvz

!
dx:

Integration by parts using the zero Neumann or periodic
boundary conditions gives
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By integration, we obtain the following energy equation

EðmðtÞÞ ¼ Eðmð0ÞÞ � 2m
Zt
0

Z
U

���mðx; sÞ � Dmðx; sÞ
���2dxds (2)

for any t > 0. Equation (2) implies that this problem has energy
dissipation property for the case m > 0 and energy conservation
property for the case m ¼ 0.

� Equation (1) has length-preserving property, i.e.,
jmðx; tÞj ¼ jmðx;0Þj for any t > 0. To show this, we do scalar
multiplication of Equation (1) with m,

vm
vt

$m ¼ �ðm� DmÞ$m� mm� ðm�mÞ$m ¼ 0:

Then, v
���mj2=vt ¼ 0; which implies jmðx; tÞj is constant for all t

and each x, that is, jmðx; tÞj ¼ jmðx;0Þj: And we assume that
jmðx;0Þj ¼ 1: For a more detailed discussion of the model, see
survey articles [12e18].

Numerical method has become an important tool in the study of
dynamics of ferromagnetic materials [19e22].

Since explicit methods cause severe time step restriction for
stability [23], several methods such as the semi-analytical schemes
[23,24] and the high order RungeeKutta algorithms [25] have been
proposed to improve their efficiency. A geometric integration
technique based on Cayley transform is applied to the time dis-
cretization of the LLG equation [26].

Through the finite element procedure [27e29], numerical so-
lutions are obtained by the extrapolation formula leading to semi-
implicit [27,29]. Otherwise, iterative techniques, as fixed-point [30]
and quasi-Newton algorithms [31], are needed.

The midpoint rule time discretization technique was applied to
LandaueLifshitzeGilbert equation [31]. The GausseSeidel projec-
tion method (GSPM) was introduced by Wang et al. [32] and the
improved GSPM was presented by GarciaeCervera and Weinan
[33]. A successive over relaxation method was presented for the
LLG [34].

Jeong and Kim [35] suggested a CrankeNicolson scheme which
is accurate, however, it uses an updated source term and repeatedly
performed iterations until the numerical solution converges. In this
paper, we propose a new robust fast accurate numerical method for
computations of the LL equation. The proposed method does not
need an updated source term and therefore it is fast. We also
perform three-dimensional space experiments.

The contents of this paper are as follows. In Section 2, we
describe the discrete semi-implicit finite difference scheme of the
LandaueLifshitz equation. Numerical experiments such as a
second-order convergence test and an energy conservation

property of the proposed scheme are given in Section 3. In Section
5, conclusions are drawn.

2. Numerical solution

For simplicity of exposition, we shall first discretize the LL
equation in one dimensional domain U ¼ (0,1) with a uniform grid
with the number of grid points Nx, a space step h ¼ 1/Nx, and a time
step Dt ¼ T/Nt. Let us denote the numerical approximation of the
solution by

mn
i ¼ mðxi; tnÞ ¼ �

uni ; v
n
i ;w

n
i

�
z

0@ uðði� 0:5Þh;nDtÞ
vðði� 0:5Þh;nDtÞ
wðði� 0:5Þh;nDtÞ

1AT

;

where i ¼ 1,., Nx and n ¼ 0,1,., Nt. Let the discrete Laplacian
operator be defined as Dhmi ¼ (miþ1 � 2mi þ mi�1)/h2. Then the
second-order CrankeNicolson scheme is given as

mnþ1
i �mn

i
Dt

¼ �1
2

�
mnþ1

i � Dhm
nþ1
i þmn

i � Dhm
n
i

�
� m

2

h
mnþ1

i �
�
mnþ1

i � Dhm
nþ1
i

�
þmn

i

� �mn
i � Dhm

n
i

�i
:

(3)

We use an accurate and fast nonlinear multigrid method [36,37]
for solving the resulting discrete system of Eq. (3). To condense the
discussion we describe only the relaxation step in the multigrid
method since it is the key step in the algorithm. First, let us rewrite
Eq. (3) as

mnþ1 þDt
2
ðm�DhmÞnþ1 þDt

2
m½m�ðm�DhmÞ�nþ1 ¼ fn; (4)

where

fn ¼ mn � Dt
2
ðm� DhmÞn � Dt

2
m½m� ðm� DhmÞ�n:

In its component form, Eq. (4) becomes

0BB@
unþ1
i

vnþ1
i

wnþ1
i

1CCAþ Dt
2

0B@ viDhwi �wiDhvi

wiDhui � uiDhwi

uiDhvi � viDhui

1CA
nþ1

þ Dt
2
m

0B@ viðuiDhvi � viDhuiÞ �wiðwiDhui � uiDhwiÞ
wiðviDhwi �wiDhviÞ � uiðuiDhvi � viDhuiÞ
uiðwiDhui � uiDhwiÞ � viðviDhwi �wiDhviÞ

1CA
nþ1

¼ fn
i

(5)
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¼
�
2
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$
vm
vt

þ 2
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$
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vt
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$
vm
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vU

� 2
Z
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v2m
vx2

$
vm
vt

þ v2m
vy2

$
vm
vt

þ v2m
vz2

$
vm
vt

!
dx

¼ �2
Z
U

Dm$mtdx ¼ 2
Z
U

Dm$ðm�Dmþ mm� ½m�Dm�Þdx ¼ 2
Z
U

Dm$ðmm� ½m�Dm�Þdx

¼ 2
Z
U

ðmm� ½m�Dm�Þ$Dmdx ¼ 2m
Z
U

ðDm�mÞ$ðm�DmÞdx ¼ �2m
Z
U

ðm�DmÞ$ðm�DmÞdx ¼ �2m
Z
U

jm�Dmj2dx:
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