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a b s t r a c t

We have studied the effect of adiabatic spin-transfer torque on mode interference of spin waves. The
mode interference generates amplitude-localized spots at special positions which do not move with
time. When applying current, the wavevector of spin wave is modified, resulting in current-dependent
displacement of amplitude-localized spots. This current-dependent change in the mode interference
may allow to probe current-induced spin wave Doppler shift in space-domain. In favorable situations, it
can be used to estimate the intrinsic properties of magnetic materials such as spin polarization.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The flow of electron through an inhomogeneous magnetization
configuration transfers spin-angular momentum; i.e., spin-transfer
torque (STT) [1,2]. This STT effect has been studied over a decade
due to its rich physics and potential for various applications [3]. To
understand the STT physics and to utilize it for device applications,
lots of studies have been performed in multilayer structures with
current-induced magnetization switching [4e12] and steady pre-
cession of magnetization [13e16], and in nanowires with current-
induced magnetic domain wall motion [17e22]. It has been re-
ported that spin-transfer also occurs in spin waves, which have the
advantages over domain walls because it is less sensitive to local
defects [23e29]. It enables to estimate the intrinsic property of STT
more accurately.

When spin waves propagate through a confined system,
several modes are excited simultaneously. The spin wave modes
are quantized in a nanowire [30e32] and the interference of the
quantized modes generates spatially localized amplitude pat-
terns [33]. This spatial pattern is caused by locally suppressed
amplitude at periodic positions, called amplitude-localized po-
sition, which do not move with time. When applying current, STT
modifies the wavevector of spin wave, i.e. current-induced spin
wave Doppler shift, which causes current-dependent displace-
ment of the amplitude-localized positions. In this work, we study

the effect of STT on the mode interference of spin waves through
current-dependent displacement of amplitude-localized posi-
tions. This paper is organized as follows. In Section 2, we present
spin-wave theory for the current-dependent change in the mode
interference of spin waves. Section III gives comparisons between
theoretical and numerical results. We summarize our work in
Section 4.

2. Mode interference of spin waves

When spin wave propagates along a nanowire having a finite
width (Fig. 1), the quantized modes of spin wave are excited due to
the lateral confinement [30,31]. The lateral confinement provides
the quantization condition to the components of spinwavevector k.
For the nanowire where the length, width and thickness are along
the x-, y-, and z-axis, respectively, the quantization rule forms
ky¼ np/Ly (n¼ integer) where Ly is thewidth of nanowire [32]. That
is, an alternating magnetic field at a local position generates several
propagating spin wave modes that satisfy the quantization rule,
leading to amode interference [33]. When the alternatingmagnetic
field applied to generate propagating spin waves is spatially uni-
form, only odd n is allowed and the amplitude of spin waves de-
creases with increasing n [34]. Thus, we consider the modes of spin
wave with n ¼ 1,3 only for understanding the mode interference.
Indeed, experimentally observed interference pattern of spin wave
modes is well reproduced when considering the first two odd
modes of spin wave, n ¼ 1, 3 [33].

The total spin wave state with the modes of n ¼ 1, 3 at a fixed
frequency f ¼ u0/2p can be written as
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f ðx; y; tÞ ¼A1cos ðkx1x� u0tÞcos
�
ky1y

�
þ A3cos ðkx3x� u0tÞcos

�
ky3y

�
;

(1)

where An is the amplitude of the mode n, and kxn and kyn are the
wave numbers of the mode n along the x- and y-axis, respectively.
The wave numbers along the y-axis, ky1 and ky3, are determined as
p/Ly and 3p/Ly, respectively, from the boundary condition, f ¼ 0 at
y ¼ �Ly/2. After some algebra, the above equation is rewritten as,

f ðx; y; tÞ ¼C1ðyÞcos
�
kxx� u0t

�
cos

�
Dkxx
2

�

þ C2ðyÞsin
�
kxx� u0t

�
sin

�
Dkxx
2

�
;

(2)

where C1(y) ¼ A1cos(ky1y) þ A3cos(ky3y), C2(y) ¼ �A1cos(ky1y)
þ A3cos(ky3y), kx ¼ ðkx1 þ kx3Þ=2; and Dkx ¼ kx1 � kx3. In the above
equation, the factors including the time t correspond to propa-
gating waves with a relatively short wavelength ls ¼ 2p=kx
whereas the factors without the time t correspond to standing
waves with a relatively long wavelength ll ¼ 4p/Dkx. Thus, the spin
wave state can be described by the product of propagating and
standing waves. Fig. 2(a) and (b) depicts twowaves described in Eq.
(2), with the amplitudes C1(y) and C2(y), respectively. In Eq. (2),
there is a special position xwhere the standing wave is zero, that is,
either cos(Dkxx/2) ¼ 0 or sin(Dkxx/2) ¼ 0. We define the positions 1
and 2, satisfying sin(Dkxx/2) ¼ 0 and cos(Dkxx/2) ¼ 0, respectively.
The spinwave states f1(x,y,t) and f2(x,y,t) at the positions 1 and 2 can
be written as,

f1ðx; y; tÞ ¼ C1ðyÞcos
�
kxx� u0t

�
; (3)

and

f2ðx; y; tÞ ¼ C2ðyÞsin
�
kxx� u0t

�
: (4)

At these special positions, the amplitudes are given as
jC1(y)j ¼ jA1cos(ky1y) þ A3cos(ky3y)j and jC2(y)j ¼ jA1cos(ky1y)
� A3cos(ky3y)j, respectively. Describing these amplitudes, one finds
the locally suppressed amplitude due to the sum of two cosine
functions as shown in Fig. 2(c)e(f). In Fig. 2 for jC1(y)j((c) and (e))
and jC2(y)j((d) and (f)), the black arrows in (e) and (f) mark the
locally suppressed amplitude. Especially, we note that for jC1(y)j,
the suppressed amplitude at side edges is remarkably small.

In brief summary, at the position 1, the magnetization oscillates
with the angular frequency of u0 and the amplitude of jC1(y)jwhere
the amplitude is suppressed at both side edges. Likewise, at the
position 2, the magnetization oscillates with the angular frequency
of u0 and the amplitude of jC2(y)j where the amplitude is sup-
pressed in the middle of a nanowire width. The positions 1 and 2
appear periodically in the nanowire along the x-axis and the peri-
odicities of position 1 and position 2 are the same as L ¼ 2p/Dkx.

For calculating the periodicityL, the longitudinal wave numbers
kx1 and kx3 should be defined through the dispersion relation,
which can be derived from the LandaueLifshitzeGilbert (LLG)
equation with the adiabatic STT term as,

vm
vt

¼ �gm�Heff þ am� vm
vt

þ ðu$VÞm; (5)

where m ¼ (mx,my,mz) is the unit vector of magnetization, g is the
gyromagnetic ratio, Heff is the effective magnetic field, a is the
intrinsic damping constant, u ¼ u0bx; u0 ¼ mBjP/eMs is the magni-
tude of adiabatic STT, mB is the Bohr magneton, j is the current
density, P is the spin polarization, e is the electron charge, andMs is
the saturation magnetization. Here we neglect the nonadiabatic
STT term, assuming that its effect is small. We consider the ex-
change spin wave so that the effective magnetic field Heff includes
the demagnetization field, the easy axis anisotropy field and the
exchange field, i.e. Heff ¼ Hkmxbx þ DV2m� Hdmzbz where
Hk ¼ (Ny � Nx)Ms is the easy axis anisotropy field, Hd ¼ (Nz � Ny)Ms
is the demagnetization field, D ¼ 2Aex/Ms, Aex is the exchange
stiffness constant, and Nx, Ny and Nz are demagnetization factors
along the x-, y-, and z-axis, respectively. Then the dispersion rela-
tion is readily obtained as

u0 ¼ �u0kx1 þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Hk þ Dk20

��
Hd þ Hk þ Dk20

�r

¼ �u0kx3 þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Hk þ Dk20

��
Hd þ Hk þ Dk20

�r
;

(6)

where k20 ¼ k2x1 þ k2y1ðk20 ¼ k2x3 þ k2y3Þ for the upper (lower)
dispersion relation. From the dispersion relations, one can get an-
alytic forms of kx1, kx3, and L, but they are too long to be included
here.

Fig. 1. Schematic of a magnetic nanowire with in-plane magnetization. The length,
width, and thickness are Lx, Ly, and Lz, respectively. An alternating magnetic field
applied along y-axis with angular frequency of u0 generates the spin wave along x-axis
with wavevector, k0.

Fig. 2. The spin wave state in Eq. (2) can be described by the sum of two waves shown in (a) and (b). (a) describes C1ðyÞcosðkxx� u0tÞcosðDkxx=2Þ and (b) describes C2ðyÞsinðkxx�
u0tÞsinðDkxx=2Þ: (a) and (b) include propagating wave with ls (solid line) and standing wave with ll (dashed line). At position 1 for jC1(y)j, the sum of amplitude of two modes (see
(c)) results in the suppressed amplitude at the edge of the nanowire (see (e)). At position 2 for jC2(y)j, sum of amplitude of two modes (see (d)) results in the suppressed amplitude
in the middle of the nanowire (see (f)).
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