Current Applied Physics 12 (2012) S79-S82

Contents lists available at SciVerse ScienceDirect

Current Applied Physics

journal homepage: www.elsevier.com/locate/cap

Relationship between interface property and energy band alignment of thermally grown SiO₂ on 4H-SiC(0001)

Takuji Hosoi^{a,b,*}, Takashi Kirino^a, Shuhei Mitani^c, Yuki Nakano^c, Takashi Nakamura^c, Takayoshi Shimura^a, Heiji Watanabe^{a,b}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan ^b Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan ^c New Material Devices R&D Center, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

A R T I C L E I N F O

Article history: Received 18 February 2012 Received in revised form 29 March 2012 Accepted 2 April 2012 Available online 7 April 2012

Keywords: 4H-SiC Thermal oxide MOS devices SiO₂/SiC interface Conduction band offset Energy band alignment

ABSTRACT

Conduction band offset (ΔE_c) at SiO₂/4H-SiC(0001) interface formed by thermal oxidation in dry oxygen ambient and its modulation due to post-oxidation annealing (POA) in Ar ambient were investigated by x-ray photoelectron spectroscopy (XPS) and by electrical characterization. Valence band spectra and O 1s energy loss spectra taken from SiO₂/SiC structures revealed that the ΔE_c reduces with increasing POA temperature while no change in SiO₂ band gap. Capacitance–voltage (C–V) characteristics for metal-oxide-semiconductor (MOS) capacitors with as-oxidized SiO₂ gate dielectrics exhibited positive flatband voltage (V_{FB}) shift of about 2 V, hysteresis of about 1 V, and large amount of interface states (D_{it}) of the order of 10^{12} cm⁻² eV⁻¹. High-temperature POA can improve the electrical property of SiO₂/SiC capacitors, but at the same time a reduction of ΔE_c is found in Fowler–Nordheim plots of current –voltage characteristics, which agrees with XPS analysis. V_{FB} values plotted against oxide thicknesses exhibited a linear relationship with the positive slope for both as-oxidized and 1100 °C annealed samples, indicating that negative fixed charges (Q_{it}) exist at the SiO₂/SiC interfaces. The areal densities of Q_{it} are estimated from the slopes are 1.0×10^{12} and 1.6×10^{11} cm⁻² for as-oxidized and 1100 °C annealed samples, respectively. These results suggest that the conduction band offset at thermally grown SiO₂/SiC interface is extrinsically increased by large amount of interface charges.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are expected to replace Si-based MOSFETs to realize high-power and high-temperature applications because of its superior physical properties such as high breakdown field, high saturation drift velocity, low intrinsic carrier concentration, and high thermal conductivity. Among various wide band gap semiconductor materials, only the SiC can form chemically and thermally stable silicon dioxide (SiO₂) insulators by conventional thermal oxidation, which makes the device fabrication process easier compared with those for the other wide band gap semiconductors requiring a deposition of insulating films. Unlike theoxidation of Si, carbon atoms in SiC must be consumed by outdiffusion of carbonate (CO) molecules from the reaction

interface between SiO₂ and SiC. However, it has been reported that a small amount of carbon impurities remain at the SiO₂/SiC interface, either as isolated atoms or in the form of graphitic clusters [1,2]. Although it is still controversial whether such carbon impurities are the main cause of high-density interface defects, low current drivability due to poor channel mobility is the serious concern for SiC-MOSFETs. Therefore, several post-oxidation treatments such as high-temperature annealing in argon (Ar) [3], nitric oxide (NO_x) [4], hydrogen (H₂) [5], or phosphoryl chloride (POCl₃) ambient [6] have been proposed to passivate the interface defects. Furthermore, higher channel mobility was demonstrated for MOSFETs with gate oxides formed by N₂O oxidation on either 4H-SiC(000T) C-face or (11Z 0) a-face than that on (0001) Si-face [7].

On the other hand, conduction band offset (ΔE_c) between thermally grown SiO₂ and 4H-SiC(0001) is reported to be 2.7 eV, which is smaller than that between SiO₂ and Si (3.15 eV) [8], and apparently reduces with increasing the temperature [9]. This is a serious concern regarding gate oxide reliability because gate leakage current strongly depends on ΔE_c . Although several papers have examined ΔE_c by utilizing Fowler–Nordheim (F–N) plots of

^{*} Corresponding author. Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

E-mail address: hosoi@mls.eng.osaka-u.ac.jp (T. Hosoi).

^{1567-1739/\$ —} see front matter \odot 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.cap.2012.04.008

current-voltage (I–V) characteristics and x-ray photoelectron spectroscopy (XPS), the extracted ΔE_c values are not consistent with each other [10-15]. This may be due to the difference in an oxide formation process including post-oxidation annealing (POA) as well as to the substrate orientation. The ΔE_c at SiO₂/ 4H-SiC(0001) seems to be higher than that at $SiO_2/4H-SiC(000\overline{1})$ [10], and a hydrogen incorporation into SiO₂ or SiO₂/SiC interface has a tendency to decrease ΔE_c value regardless of the substrate orientation [11–14]. These results suggest that both atomic structure and fixed charge at SiO₂/SiC interface determine ΔE_{c} , but the relationship between interface electrical properties and ΔE_{c} have not been clarified yet. In this study, the energy band alignments of thermally grown SiO₂/4H-SiC(0001) structures were investigated by means of both XPS and electrical measurements of SiC-MOS capacitors. The interface property was modulated by high-temperature POA in Ar ambient (Ar-POA), and an impact of interface defect passivation on the band offset modulation at SiO₂/ SiC interface was discussed.

2. Experimental

The starting substrates used in this study was 4° off-axis 4H-SiC(0001) Si-face wafers with n-type epilayer. Thin (3 nm) and thick (40 nm) SiO₂ layers were grown by thermal oxidation in dry O₂ ambient in a furnace at 1100 °C for 10 min and 12 h, respectively. Subsequently, flowing gas was changed from O₂ to Ar, and the samples were annealed at 900 or 1100 °C for 1 h. For 40-nm-thick samples, Al gate electrodes were deposited by vacuum evaporation on the oxides through a shadow mask to define MOS capacitor gates. Al was also deposited for the back contact. Capacitance-voltage (C-V) and I-V measurements were performed on the fabricated MOS capacitors. The flatband voltage (V_{FB}) and equivalent oxide thickness (EOT) were extracted from high-frequency C-V characteristics. Interface state density (Dit) was evaluated by high-low method and ΔE_c of SiC-MOS devices were also electrically estimated from F-N plots of the measured I-V data. The XPS measurements were performed for 3-nm-thick oxides from the oxide surfaces by using a monochromatic Al Kα source at 1486.6 eV with a takeoff angle of 90°. To determine the energy band alignments of SiO₂/SiC structures, band gap of the SiO₂ layers and valence band offset at the interfaces were examined by XPS [16].

3. Results and discussion

Fig. 1 shows Si 2p core-level spectra taken from SiO₂/SiC structures with and without Ar-POA and from a reference SiC substrate. For all the oxidized samples, SiC bulk peak (Si⁰⁺) and SiO₂

Fig. 1. Si 2p core-level spectra taken from 3-nm-thick SiO₂ surfaces for the samples oxidized at 1100 °C with and without Ar-POA at either 900 or 1100 °C, together with a spectrum from a bulk 4H-SiC(0001) reference. Peak intensity was normalized by bulk Si 2p signal.

peak (Si⁴⁺) appeared at binding energy of 101.8 eV and 104.5 eV, respectively. The difference in SiO₂ peak intensity indicates the slightly thicker oxides for Ar-POA samples. Both oxidation and Ar-POA were performed in the same furnace by changing the flowing gas from O₂ to Ar, thus oxidation could proceed to some extent during gradual replacement of O₂ by Ar in the furnace, resulting in thicker oxides for Ar-POA samples. However, the total amount of suboxide components (Si¹⁺, Si²⁺ and Si³⁺), which appear between Si^{0+} and Si^{4+} peaks, seems to be comparable to each other. Since most of the suboxide components are considered to originate from SiO₂/SiC interface [17], structural modification of SiO₂/SiC interface by Ar-POA could not be determined from these XPS spectra. Fig. 2 shows O 1s energy loss spectra taken from the same samples. Since some of the photoelectrons from the sample were subjected to energy loss due to band to band excitation, energy loss spectra were observed at the higher binding energy (lower kinetic energy) from O 1s core-level. Energy band gap of these oxides deduced from O 1s energy loss spectra were identical (8.7 eV), indicating the negligible impact of Ar-POA on bulk properties of the SiO₂ layer. Fig. 3 shows valence band spectra taken from SiO₂/SiC structures with and without Ar-POA and from a reference SiC surface. In the measured valence spectra for the SiO₂/SiC structures, photoelectrons from SiO₂ layers overlapped with those from SiC substrates. Therefore, the deconvoluted valence band spectra for SiO₂ (blue lines) were estimated by subtracting the reference SiC spectra (green lines) from the SiO₂/SiC spectra (red lines). Valence band offset at SiO₂/SiC interface corresponds to the difference in the valence band maximum between SiO₂ and SiC determined by linear extrapolation of the leading edges of the measured SiC and deconvoluted SiO₂ valence band spectra. The obtained valence band offsets at SiO₂/SiC interface with Ar-POA at 900 and 1100 °C were found to be 0.05 and 0.1 eV larger than that without Ar-POA. By taking into account the band gap of 4H-SiC (3.26 eV), we can conclude that ΔE_c at SiO₂/SiC interface was slightly decreased after Ar-POA depending on the annealing temperature.

Next, we examined the changes in the interface properties and band structures induced by Ar-POA based on electrical characterizations of SiC-MOS capacitors with 40-nm-thick SiO₂ gate dielectrics. Fig. 4(a) shows the bidirectional C–V characteristics of SiC-MOS capacitors with and without Ar-POA measured by sweeping the gate voltage from -10 V to 10 V and back to -10 V at a frequency of 1 MHz. The C–V curve for the as-oxidized sample exhibits a stretch-out shape, a small hysteresis and positive V_{FB} shift from the ideal value, suggesting the existence of large amount of interface traps and negative fixed charges. The Ar-POA at 1100 °C could effectively reduce the traps and charges, thus resulting in

Fig. 2. O 1s energy loss spectra for $SiO_2/4H$ -SiC(0001) structures with and without Ar-POA. The zero of the energy loss scale is identical to the binding energy of O 1s peak. The onset of the excitation from the valence to conduction bands (band gap) can be determined from the loss spectra.

Download English Version:

https://daneshyari.com/en/article/1787386

Download Persian Version:

https://daneshyari.com/article/1787386

Daneshyari.com