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a b s t r a c t

In this paper, size effect of microtubules (MTs) is studied via modified strain gradient elasticity theory for
buckling. MTs are modeled by BernoullieEuler beam theory. By using the variational principle, the
governing equations for buckling and related boundary conditions are obtained in conjunctions with the
strain gradient elasticity. The size effect for buckling analysis of MTs is investigated and results are
presented in graph form. The results obtained by strain gradient elasticity theory are discussed through
the numerical simulations. The results based on the modified couple stress theory, nonlocal elasticity
theory and classical elasticity theories have been also presented for comparison purposes.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Micro andnanobeams have beenwidely used in nano andmicro-
sized systems and devices such as biosensors, nanowires, atomic
force microscope, microactuators, nano probes, micro electrome-
chanical, ultra thin films and nano electromechanical systems [1].

Another important micro structure is the protein microtubules
in living cell. It is well known that microtubules (MTs), microfila-
ments and intermediate filaments are the main components of
cytoskeleton. MTs are protein organized in a network that is
interconnected with microfilaments and intermediate filaments to
form the cytoskeleton structures [2]. The mechanical properties of
MTs play an important role in process such as cell division and
intracellular transport [3,4]. MTs are the most rigid of the cyto-
skeletal filaments and have the most complex structure. The
structure of MTs is cylindrical and it typically involves 13 parallel
protofilaments which are connected laterally into hollow tubes.
MTs are considered as hollow cylinders having 25 nm external and
15 nm internal diameters. The length of MTs can vary from tens of
nanometers to hundreds of microns. Furthermore, MTs are
considered as self-assembling biological nanotubes that are
essential for cell motility, building the cytoskeleton, cell division

and intracellular transport. The average Young’s modulus of MTs is
w2.0 GPa [5e10]. Among the three types of cytoskeletal filaments,
MTs are the most rigid. It is also stated that the bending rigidity of
MTs is about 100 times that of intermediate and actin filaments. It is
observed that the size effect has a major role on static, buckling and
dynamic behavior of micro- and nano-scaled structures and can’t
be negligible. This size effect has not been interpreted by classical
(Cauchy) elasticity. After that, higher order elasticity theories have
widely been used by researchers. There have been a number of
experimental and mathematical studies in recent past ten years
dealing with the mechanical properties of MTs [11e17]. Wang et al.
[18] investigate the buckling analysis of MTs via orthotropic elastic
shell. Buckling analysis of MTs is presented by Gao and An [19]
based on the anisotropic shell model. Ece and Aydogdu [20] used
nonlocal elasticity for in-plane vibration analysis of double-walled
carbon nanotubes. Small scale effects on the mechanical behaviors
of protein MTs based on the nonlocal elasticity theory is investi-
gated by Gao and Lei [21]. Buckling and postbuckling analyses of
MTs have been detailed investigated by Shen [22e25] based on the
nonlocal shell model. Recently, a modified type of couple stress
theory was proposed by Yang et al. [26]. There is only one addi-
tional material length scale parameter in this theory and also
couple stress tensor is symmetric. This modified couple stress
theory is more useful than classical one due to these features. The
modified strain gradient elasticity theory is another higher-order
continuum theory, which was proposed by Lam et al. [27] contains
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a new additional equilibrium equation besides the classical equi-
librium equations and also five elastic constants (two classical and
three non-classical) for isotropic linear elastic materials. Both the
strain gradient elasticity and couple stress theories are included the
second-order displacement gradients. Then, a new BernoullieEuler
beam model was developed by Park and Gao [28] by using the
modified couple stress theory for bending. After this, modified
couple stress and strain gradient elasticity theories have been
widely applied to static and dynamic analysis of beams and plates
[29e37]. Equilibrium and static deflection for bending of nonlocal
nanobeams are investigated in detail by Lim and Wang [38]. In
some of the recent published works, for example [39e47], the
importance of using nonlocal theory has been addressed and very
detailed results were presented. More recently, buckling analysis of
nano-sized structures has been reviewed by Wang et al. [48] in
detail. Buckling instability of nanobeams is investigated in
conjunction with the stiffness strengthening effects of using the
nonlocal elasticity theory is investigated [49]. Cylindrical shell
model is also adopted for modeling of nanostructures [50,51]. By
using the higher-order continuum approach, analyses of micro-
sized mechanical and biological systems are also investigated by
present authors [52e56].

In the present work, the consistent governing equations for the
buckling for MTS are derived using strain gradient elasticity and
variational approach via BernoullieEuler beam theory. To the best
knowledge of authors, it is the first time the strain gradient elas-
ticity and couple stress theories have been successfully applied to
MTs for buckling analysis. The influences of the length scale
parameter, on the buckling characteristics of MTs have been dis-
cussed in detailed.

2. Strain gradient formulation for stability

The strain energy U in a linear elastic isotropic material occu-
pying region U based on the modified strain gradient elasticity
theory can be written by [27]:

U ¼ 1
2
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where ui is the displacement vector, 3ij is the strain tensor, 3mm,i is
the dilatation gradient vector, hð1Þijk is the deviatoric stretch gradient
tensor, csij is the symmetric rotation gradient tensor, dij is the Kro-
necker delta and eijk is the permutation symbol. The stress
measures: sij is the classical stress tensor and pi, s

ð1Þ
ijk ; m

s
ij are the

higher order stresses, also 30ij is deviatoric strain, respectively,
defined as [27]:

sij ¼ kdij3mm þ 2m30ij; (6)

pi ¼ 2ml20gi; (7)
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ð1Þ
ijk ; (8)

ms
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1
3
3mmdij: (10)

where k is bulkmodule, m is shear module and l0, l1, l2 are additional
material length scale parameters related to dilatation gradients,
deviatoric stretch gradients and rotation gradients, respectively. By
using the above equations, the strain energy U in equation (1) can
be rewritten as:

U ¼ 1
2
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i
dx; (11)
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�
;

(12)

I and A are themoment of inertia and cross section area of the beam,
respectively. Detailed derivation for strain energy statement in
equation (11) ispresentedbypresent authors [56].Whenweconsider
in addition theeffect of the axial compressive forceN, one obtains the
following expression for the strain energy in equation (11):
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Finally, the governing equation of MTs for buckling as well as all
possible boundary conditions can be determined using the
following variational principle:
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(14)

It can be seen clearly from the above variational equation that
each termmust be equal to zero. Hence, the governing equation for
buckling is given by Akgöz [52]:

B$wð4Þ � D$wð6Þ þ Nw00 ¼ 0; (15)

and the boundary conditions at x¼ 0,L;

V ¼ D$wð5Þ � B$w000 � Nw0 or dw ¼ 0
Mc ¼ B$w00 � D$wð4Þ or dw0 ¼ 0
Mnc ¼ D$w000 or dw00 ¼ 0:

(16)

Similarly, when the additional material length scale parameters
l0 and l1 in the modified strain gradient elasticity theory equal to
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