Contents lists available at ScienceDirect

Electrochemistry Communications

journal homepage: www.elsevier.com/locate/elecom

Short communication

Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers

Liping Bao, Yongxin Tao, Xiaogang Gu, Baozhu Yang, Linhong Deng, Yong Kong *

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China

A R T I C L E I N F O

Article history: Received 8 December 2015 Received in revised form 12 January 2016 Accepted 12 January 2016 Available online 21 January 2016

Keywords: Potato starch Hydroxypropyl potato starch Electrochemical recognition Tryptophan isomers Temperature dependent

1. Introduction

Chiral recognition of isomers is of significant importance in the living world because the body is amazingly enantioselective, showing different physiological responses to different isomers [1]. Recent years have witnessed the development of supramolecular chemistry-based chiral recognition [2], in which the host–guest interactions are utilized for distinguishing between the left- and right-handed forms of chiral compounds. More recently, the combination of electrochemistry and supramolecular chemistry was reported by our group [3,4], which opens a new window for electrochemical enantiorecognition since it translates a chiral molecular recognition event into discernible changes in electrochemical responses.

Starch exists predominantly in two polymorphic forms (A- and B-types), in which the unit cell contains 12 glucose residues located in two left-handed, parallel-stranded double helices [5]. The double helices of A- and B-structures are arranged around a channel filled with well-localized water molecules [6]. It has been reported that the double helices structure of DNA plays a crucial key role in distinguishing chiral complexes although the mechanism has not been well explained [7,8], and thus it strongly motivates researchers to be engaged in the starch-based recognition of racemic amino acids. In fact, starch has been adopted in thin-layer chromatographic work for the enantioseparation of tryptophan (Trp) isomers [9]. Moreover, amylose-based chiral stationary

ABSTRACT

A simple but highly enantioselective system based on potato starch (PS) modified electrode was developed for electrochemical recognition of tryptophan (Trp) isomers. Due to favorability of host–guest interactions between PS and D-Trp, PS preferably combined with D-Trp compared with L-Trp, resulting in larger amount of L-Trp penetrating through the left-handed double helices of PS to the electrode surface than D-Trp. And therefore, success-ful recognition of Trp isomers was achieved at the PS-based electrode. The PS-based chiral recognition was temperature dependent, which was attributed to the significant influence of temperature on the H-bonds between PS and the guest molecules. The recognition efficiency was remarkably decreased after hydroxypropyl groups were introduced to PS, and the decreased recognition efficiency at the hydroxypropyl PS (H-PS) might be due to the extra steric hindrance.

© 2016 Elsevier B.V. All rights reserved.

phase has also been developed for molecular enantiorecognition of omeprazole, although its function is not fully understood [10].

Another problem encountered in the starch-based chiral recognition is that due to the inferior conductivity of starch, little attention has been paid to the electrochemical enantiorecognition of chiral compounds by starch. More recently, natural polysaccharides-based electrochemistry has been realized successfully *via* self-assembly or hybridization of natural polysaccharides with electrically conductive materials such as poly(L-glutamic acid) (P-L-Glu) [11] and graphene quantum dots (GQDs) [12], which opens up new opportunities for starch-based electrochemical enantiorecognition.

Herein, we report on the electrochemical chiral recognition of Trp isomers by potato starch (PS) self-assembled on P-L-Glu. Trp is chosen as the target to be recognized owing to its great importance in most biological systems [13]. PS/P-L-Glu exhibits a higher affinity for D-Trp than L-Trp due to the favorability of intermolecular H-bonds formation between PS and D-Trp. However, the recognition efficiency is decreased when hydroxypropyl PS (H-PS) is used for the recognition instead of PS. Furthermore, the temperature-dependent feature of the proposed PS/P-L-Glu and H-PS/P-L-Glu chiral sensing systems is also investigated, and it is exciting to find that for PS/P-L-Glu, the highest recognition efficiency is obtained at 37 °C.

2. Experimental

2.1. Reagents and apparatus

* Corresponding author. Tel.: + 86 519 86330256; fax: + 86 519 86330167. *E-mail address*: yzkongyong@126.com (Y. Kong). Potato starch (PS) was obtained from Aladdin Chemistry Co., Ltd. (Shanghai, China). Hydroxypropyl potato starch (H-PS) was purchased

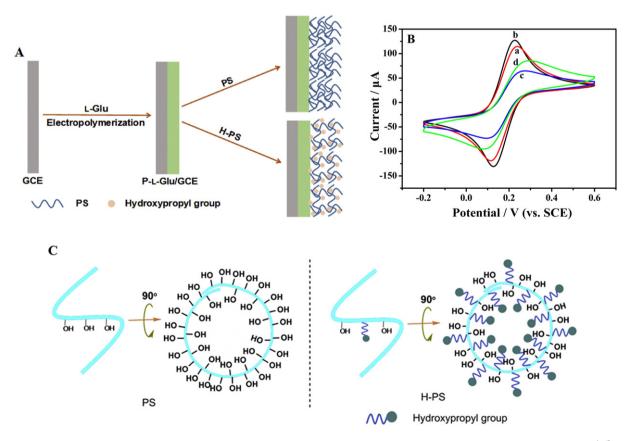
from Shanghai Guomin Starch Industry Co., Ltd. (China). Electrochemical experiments were conducted on a CHI-660D electrochemical workstation (Shanghai Chenhua Instruments Co., China) in a traditional threeelectrode system. The working electrode was a glassy carbon electrode modified with PS or H-PS self-assembled P-L-Glu. The counter electrode was a platinum foil and the reference electrode was a saturated calomel electrode (SCE). The water contact angles of different samples were measured by a DSA25 machine (Kruss GmbH, Germany), and 2 µL of water droplet was dropped onto the surface of different samples for each measurement.

2.2. Electrodeposition of P-L-Glu and self-assembly of PS or H-PS onto P-L-Glu/GCE

Electropolymerization of L-Glu was carried out by cyclic voltammetry in 0.05 M L-Glu dissolved in 0.1 M phosphate buffer solution (PBS, pH 7.0) [14], in which the potential was set between -0.6 and 2.0 V at a scan rate of 100 mV s⁻¹ for 20 cycles. Next, the P-L-Glu/GCE was immersed into 2 mg mL⁻¹ PS or H-PS dissolved in 25 mL 0.1 M PBS at 8 °C for 24 h, as shown in Fig. 1A.

2.3. Electrochemical chiral recognition of Trp isomers

The PS or H-PS self-assembled P-L-Glu/GCE was immersed into 25 mL 0.1 M PBS containing 0.5 mM L-Trp or D-Trp for 60 s at different temperatures. Next, the differential pulse voltammograms (DPVs) of the two inclusion complexes were measured with a step potential of 4 mV and an amplitude of 50 mV. After each measurement, the electrochemical chiral sensing system was regenerated by cyclic voltammetry in 0.1 M PBS for 20 cycles in the potential range from 0.4 to 1.2 V.


3. Results and discussion

3.1. Electrochemical characterization of PS and H-PS self-assembled P-L-Glu/GCE

Fig. 1B shows the cyclic voltammograms (CVs) of the electrodes obtained at different stages in 25 mL 0.1 M KCl containing 5 mM $Fe(CN)_6^{4-/3-}$, and a pair of well-defined redox peaks is observed at the bare GCE (curve a). After P-L-Glu is electrodeposited onto GCE, the peak current (I_p) is increased (curve b). The improved electrochemical reversibility is attributed to the introduced P-L-Glu films, which can accelerate the charge transfer and facilitate the transition between the redox probe couple [15]. After PS and H-PS are self-assembled onto P-L-Glu/GCE, the I_p is declined significantly, especially for PS, due to the inferior conductivity of PS and H-PS (curves c and d). Considering the chemical structures of PS and H-PS (Fig. 1C), it is no doubt that the hydroxypropyl groups on H-PS hamper the formation of H-bonds between H-PS and P-L-Glu and relatively larger I_p compared with PS.

3.2. Electrochemical enantiorecognition of Trp isomers

Fig. 2 shows the DPVs of L-Trp and D-Trp at different electrodes at 37 °C. The completely overlapped (Fig. 2A) and almost completely overlapped DPVs (Fig. 2B) of the Trp isomers demonstrate that bare GCE and P-L-Glu/GCE exhibit no recognition ability toward Trp isomers due to the absence of chiral sites. Surprisingly, discernable differences in the

Fig. 1. (A) Schematic illustration showing the electrodeposition of P-L-Glu and self-assembly of PS and H-PS onto P-L-Glu/GCE. (B) Cyclic voltammograms of 5 mM Fe(CN)₆^{4-/3-} at bare GCE (a), P-L-Glu/GCE (b), PS (c), and H-PS (d) self-assembled P-L-Glu/GCE. (C) Section views of PS and H-PS.

Download English Version:

https://daneshyari.com/en/article/178748

Download Persian Version:

https://daneshyari.com/article/178748

Daneshyari.com