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a b s t r a c t

A single-beam model is presented for investigating the nonlinear vibrations of single-walled carbon
nanotubes (SWNTs) embedded in an elastic medium. The thermal effect is also incorporated into the
formulation. The variational iteration method is used to solve the corresponding nonlinear differential
equation. The amplitudeefrequency curves for large-amplitude vibrations are graphically illustrated. The
influences of thermal effect, some commonly used boundary conditions, changes in material constant of
the surrounding elastic medium and variations of geometrical parameters on the vibration character-
istics of nanotubes are studied. The results obtained are compared, where possible, with those from the
open literature. This comparison clarifies the accuracy as well as the capability of the present method.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, carbon nanotubes (CNTs) have attracted
extensive research activities due to their exceptional mechanical,
physical, chemical and thermal properties. CNTs were first discov-
ered by Iijima [1] in 1991. A large number of researches have been
hitherto conducted to study the mechanical properties of these
nanomaterials [2e7]. In spite of being too small and having light
weight, they have very large Young’s modulus in axial direction
(nearly 1 TPa). Undoubtedly, CNTs have the eligibility to be new and
the most popular nanomaterial of the 21st century. Since the
vibrations of CNTs are of considerable importance in a number of
nanomechanical devices such as oscillators, charge detectors, field
emission devices and sensors, many researches have been so far
devoted to the problem of the vibration of CNTs [8e11]. A good
review on the vibration of CNTs is given by Gibson et al. [12]
including a concise review of as many of the relevant publications
as possible. Based on the theory of thermal elasticity mechanics,
Wang et al. [13] studied the vibration and instability analysis of
fluid-conveying SWNTs considering the thermal effect.

However, most of the investigations conducted on the vibration
of CNTs have been restricted to the linear regime and fewer works
weredoneon thenonlinear vibrationof thesematerials. Recently, Fu
et al. [14] studied the nonlinear vibrations of embedded nanotubes
using the incremental harmonic balanced method (IHBM). In that

work, single-walled nanotubes (SWNTs) and double-walled nano-
tubes (DWNTs) considered for the study.Ansari et al. [15] applied the
homotopy perturbation method (HPM) to investigate the nonlinear
vibrationofmultiwalled carbonnanotubes (MWNTs)using the same
model as in [14]. In that paper, they also extended Fu’s work to the
problem of triple-walled nanotubes (TWNTs) and gave the
nonlinear amplitudeefrequency curves. In this paper, an elastic
EulereBernoulli beam model is developed for the nonlinear oscil-
lations of SWNTs taking the thermal effect into consideration. The
influences of some commonly used boundary conditions, tempera-
ture change and variations of the nanotube’s geometrical parame-
ters on the fundamental nonlinear frequencies are examined. The
variational iteration method (VIM) is used to formulate solutions to
the corresponding nonlinear differential equation.

The aim is to feature the capability of VIM for finding approxi-
mate solutions of many nonlinear vibrating systems. The VIM was
first proposed as a general Lagrange multiplier method to solve
nonlinear problems by Inokuti et al. [16] in 1978. Thismethod has so
farbeen shown tobeeffective, simpleandaccurate for solvinga large
variety of nonlinear problems with approximations converging
rapidly to the accurate solutions [17e25]. To illustrate the basic ideas
of VIM, consider the following general nonlinear system:

LuðtÞ þ NuðtÞ ¼ f ðtÞ; (1)

where L is a linear operator, N is a nonlinear operator, and f(t) is
a known analytic function. According to the variational iteration
method, we can construct the following iteration formulation:
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unþ1ðtÞ ¼ unðtÞ þ
Zt
0

l
�
LunðzÞ þ N~unðzÞ � f ðzÞ

�
dz: (2)

The preceding expression is often called a correction functional
whose initial approximation can be taken u0(t). Here l is called
a general Lagrange multiplier, which can be determined optimally
via the variational theory, and ~un is considered as a restricted
variation [26], i.e. d~un ¼ 0. Now we adopt VIM to the problem of
the nonlinear vibrations of CNTs.

2. Basic equations

Consider a CNT of length L, Young’s modulus E, density r, cross-
sectional area A, and cross-sectional inertia moment I, embedded in
an elastic medium with constant k determined by the material
constants of the surroundingmedium. Thismodel is shown in Fig.1.
Assume that u andw are the displacements of the nanotube along x
and z directions respectively in terms of the spatial coordinate x and
the time variable t.

The free vibration equation of this embedded beam-modeled CNT
considering the thermal effect and geometric nonlinearity is [14]
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where P is the transverse load considered as the interaction pres-
sure per unit axial length between the outermost tube and the
surrounding medium, which can be described by the Winkler
model [27,28] as

Pðx; tÞ ¼ �kw: (4)

Here the negative sign indicates that the pressure P is opposite to
the deflection of the outermost tube. NT is the constant axial force
associated with the thermal effect defined as [29]

NT ¼ � EA
1� 2n

aT; (5)

where a denotes the coefficient of thermal expansion in the
direction of the x-axis, n is Poisson’s ratio, and T is temperature
change. Substituting Eqs. (4) and (5) into Eq. (3) gives
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Assume w(x,t)¼ 4(x)W(t), where 4(x) is the first eigenmode of
the beam satisfying the kinematic boundary conditions andW(t), is
the time-dependent deflectionparameterof the nanotube. Applying
the Galerkin method, the governing equations of motion are
obtained as
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W3 ¼ 0: (7)

With the following initial conditions:

Wð0Þ ¼ Wmax;
dWð0Þ

dt
¼ 0;

here Wmax denotes the maximum amplitude of oscillation. In Eq.
(7) a1, a2, a3 and a4 are as follows:
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(8)

The deflection of the nanotube is subjected to the following
boundary conditions:

For a Simply Supported (S-S) nanotube

wð0; tÞ ¼ 0;
v2wð0; tÞ

vx2
¼ 0; wðL; tÞ ¼ 0;

v2wðL; tÞ
vx2

¼ 0: (9)

For a ClampedeClamped (CeC) nanotube

wð0; tÞ ¼ 0;
vwð0; tÞ

vx
¼ 0; wðL; tÞ ¼ 0;

vwðL; tÞ
vx

¼ 0: (10)

For a ClampedeSimply supported (CeS) nanotube

wð0; tÞ ¼ 0;
vwð0; tÞ

vx
¼ 0; wðL; tÞ ¼ 0;

v2wðL; tÞ
vx2

¼ 0: (11)

The base functions corresponding to the above boundary condi-
tions are given in Table 1.

3. Application of VIM

Under the transformations r ¼ ffiffiffiffiffiffiffi
I=A

p
, and a ¼ W=r, Eq. (7) can

be transformed to the following nonlinear equation:

d2a
dt2

þ f1a� f2a
3 ¼ 0; (12)

with f1 and f2 defined as
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In Eq. (12),uL ¼
ffiffiffiffi
f1

p
is the linear, free vibration frequency. Applying

VIM constructs the following correction functional on Eq. (12):

anþ1 ¼ an þ
Zt
0

lðzÞ
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3
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herein ~an is considered as a restricted variation. Making the above
correction functional stationary, together with considering da(0)¼
0, we arrive at

danþ1ðtÞ ¼ danðtÞþ lðdanÞ0
���t
0
� l0dan

���t
0
þ
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0

�
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dan dz ¼ 0:

(15)

Fig. 1. Model of an embedded carbon nanotube.
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