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Abstract

An analytical semiclassical model is presented of the interaction between a single atom and the two degenerate counter-propagating
electromagnetic field modes in a microtoroidal resonator. The model is valid in the weak driving limit, and predicts atomic transits with
temporal structure qualitatively different than that when only one electromagnetic mode is present.

© 2007 Elsevier B.V. All rights reserved.

PACS: 42.50.—p; 42.50.Ct; 42.50.Pq

Keywords: Cavity quantum electrodynamics; Strong coupling; Semiclassical model; Quantum information

1. Introduction

Cavity quantum electrodynamics facilitates the coherent
interaction of single photons with single atoms. Such capa-
bilities are expected to be essential for quantum informa-
tion networks [5,7], which have the potential to facilitate
many novel information processing and communications
techniques. Many technology platforms have now been
developed [12,16,15,3,13,22], however none presently offer
the scalability, efficiency, stability and interaction strength
required for a large scale quantum information network.
Recently, a new technology based on whispering gallery
type microtoroidal optical resonators has been developed
[2,20]. Microtoroids have been shown to be highly ideal
for cavity quantum electrodynamics [17], and strong
coupling between a single Cesium atom and the electro-
magnetic mode in a microtoroid has recently been demon-
strated [1]. Cavity quantum electrodynamics in
microtoriods is complicated by the presence of two fre-
quency degenerate counter-propagating electromagnetic
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field modes coupled by defect scattering [18]. Here, we pro-
vide a simple analytic semiclassical model of the system in
the weak driving regime, which predicts temporal structure
in atomic transits qualitatively different than that present in
other systems.

2. Theoretical model of an atom coupled to two
electromagnetic modes

In this paper, we model the interaction of a single atom
with two modes of the electromagnetic field contained with
an optical resonator. A simple model of this system is
shown in Fig. 1, with the relevant coupling rates, decay
rates, and system operators indicated. In the interaction
picture with respect to laser frequency, the Hamiltonian
of this system is

H = hAb'D + hiAqdlay + hAadlas + kg, (zﬂlia + iﬂal)
+ 1ig, (alb + bia ) + g, (ala + alan), (1)
where we have used the electric dipole and rotating wave

approximations; and a;, @, and b are annihilation opera-
tors describing the electromagnetic field in modes 1 and
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Fig. 1. Schematic of a double resonator symmetrically coupled to a single
atom.

2, and the excitation of the atom, respectively; A, A, and
A, are the electromagnetic and atomic detunings; and g
and g, are the inter-field and field-atom coupling rates with
2go equal to the well known single-photon Rabi frequency.
This expression is a direct extension of the standard Ham-
iltonian describing a two level atom interacting with one
mode of the electromagnetic field given in Doherty [6].
Here, we limit ourselves to the experimentally relevant case
of resonant atom and cavity modes, with detuning only for
the probe field. Hence A, = A, = A, = 0. This simplifies
the Hamiltonian in Eq. (1) to

H = hgy(alb+blar) + hg, (alb + blan) + g, (@l + aban).

Using the quantum Langevin equation this Hamiltonian
can be converted into a set of equations of motion for
the atomic and intracavity field operators in the usual
way [8,9]. Here, we focus on the mean field behavior of
the system, and therefore take the expectation values of
these equations to yield

O.Cl = —1gﬂ — igc(x2 — K| — 2kinocl,inv (3)
o = —igh — igen — Koo, @)
B = —igoy —igon — P, (5)

where the coherent amplitudes o = (@), o = (@),
p= (Z)), and oy iy = (@14n), With a@;;, the annihilation oper-
ator for the input probe field; and y and x are the atom
and cavity decay rates. The cavity decay rate can be ex-
panded as k = k;, + k;, where k;, and x; are the input cou-
pling and loss rates, respectively. Here, we have neglected
terms involving the product of three operators such as
(B@Ez). This approximation is valid in the weak driving lim-
it of cavity quantum electrodynamics, where the atom is far
from saturation. A detailed account of mean field modeling
in cavity quantum electrodynamics and a thorough justifi-
cation of the above approximation can be found in Doher-
ty [6]. )

In the steady state o = iway, & = iwo, and f =iwf,
where w is the probe detuning. Egs. (3)—(5) then become
a set of simultaneous linear equations which can be solve
through application of some simple algebra. The resulting

expressions for the intracavity coherent amplitudes o
and o, are

=V 2Kt [ + 1w + C]

o = B 2 VR (6)
[k +iw+ C]" — [C +ig,]
oy = \/muin[c +ig] (7)

[k +iow + C]2 — [C—f—igc}z’

where C = g*/(y + iw). We wish to determine the output
fields from each cavity mode, which can be obtained using
the input/output boundary conditions [8,9]

%1 out = %in + 2Kinoclv 02 out = 2K7i11052~ (8)
We directly find

2Kin i C
X1 0out = %in 1 - r [K o+ ] (9)

[ +iw+C] = [C +ig )]’
2Kin%in [C + 1g]
[c+iw+ C* = [C +ig "

02 out = (10)
These equations provide the coherent amplitudes of the
output field from the atom — two cavity mode system.

3. Interpretation of model

The response of the system to the probe field predicted
from Egs. (9) and (10) is shown in Fig. 2 as a function of
w for critical coupling and typical values of the coupling
rates, and decay rates. The dashed line shows the response
of the system when no atom is present (g = 0). As expected
for a critically coupled cavity [18], when the probe is reso-
nant (w = 0) the reflected power from the cavity is zero and
the transmitted power is maximized, whereas for large
detuning (o > (k,y)) this situation reverses. When an atom
is present as shown by the solid line, however, one observes
Rabi splitting with two spectral resonance appearing sepa-
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Fig. 2. Cavity (a) transmission and (b) reflection spectra predicted with
(solid line) and without (dashed line) the presence of an atom normalized to
the probe power. Model parameters: go/2r = 200 MHz, g./2n = 30 MHz,
y/2n=2.6 MHz, 1)/2n=1.8 MHz, critically coupled with x;,/2n =
30.05 MHz.
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