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a b s t r a c t

The diffusion-limited growth of an initially spherical particle of dilute ternary alloy in contact with its
melt has been studied from a theoretical point of view and the effects of interface kinetics and multi-
component diffusion have been characterized on the development of a shape perturbation of the sphere.
When both concentrations of the diffusing species are imposed in the far-field, the different radii related
to the absolute and relative stability of the particle with respect to the development of spherical har-
monics have been determined when a linear kinetics law is considered for the solid/liquid interface. The
development of the shape fluctuations of the sphere has been also characterized when the flux of both
species are set in the far-field.

& 2016 Published by Elsevier B.V.

1. Introduction

The control of the shape evolution of solid spheres of alloy
growing by diffusion or heat flow from their melt is of paramount
importance in materials science and metallurgy. In particular, the
morphological instability of the alloy particles has been the topic
of intensive research from both experimental and theoretical point
of view. Mullins and Sekerka have determined the critical radius,
in the linear regime of evolution by diffusion and/or heat flow,
beyond which the development of shape perturbations is favour-
able in the case of a sphere [1]. These authors also investigated the
case of a planar solid of binary alloy in contact with a melt [2]. The
effect of interface kinetics on the stability of the sphere growing in
a supercooled melt has been then characterized in the cases where
linear and square kinetic laws are considered, when the tem-
perature field [3] is imposed in the far-field. When the flux is
imposed, the morphological change of the crystal has been also
studied in the linear and non-linear regimes of evolution [4–6]. In
the case of a planar solid–liquid interface, the linear stability
analysis has been performed for large thermal Peclet numbers [8]
and when the segregation coefficient and interface temperature
depend on the pulling speed [9,10]. Likewise, the destabilizing
effect of stress resulting from the concentration dependence of the
lattice parameters of binary alloy has been characterized [7]. The

stability of the solid–liquid interface has been studied during the
solidification of dilute ternary alloys. Assuming that local equili-
brium condition is satisfied at the interface, it has been shown that
the Mullins–Sekerka stability criterion can be extended [11].
Likewise, the Ostwald ripening in ternary [12] and multi-
component alloys [13] has been investigated and the temporal
exponents for the average particle radius have been found to be
identical to the ones in the binary limit. Recently, the planar and
dendritic growth in multicomponent systems has been considered
and the effect of diffusive interactions between species has been
characterized [14]. The equiaxed globular solidification has been
also investigated and the interdiffusion phenomena have been
analysed [15]. In this paper, the conjugated effects of interface
kinetics and diffusion of the two species have been studied on the
morphological evolution of a ternary alloy growing by diffusion in
its melt. The case of dilute alloy is also discussed.

2. Modelling and discussion

The diffusion-limited growth at constant temperature T is
considered for a solid sphere in contact with its melt in the case of
a dilute ternary alloy of solute concentrations ci

L in the liquid
phase and ci

S in the solid one, with i¼1,2 for the two solute spe-
cies. The following approximations have been used. There is no
convection in the melt and no diffusion in the solid phase. In the
dilute approximation, the off-diagonal terms of the diffusion
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coefficients are neglected in the liquid phase, i.e. D12 ¼D21 ¼ 0.
The diffusion coefficients are independent of the concentration
fields of the solute species and are set positive [14,16], i.e. D11Z
0;D22Z0: The solute concentrations in the liquid phase are
assumed to satisfy, in the spherical coordinate system ðr;θ;φÞ, the
Laplace equation [1]:

ΔcLi ðr;θ;φÞ ¼ 0; ð1Þ
where Δ is the Laplacian operator. At the solid–liquid interface, the
generalized Gibbs–Thomson equation has been written in the case
where the liquidus slope is assumed to be constant and a linear
interface kinetic law is considered [3,14]. It yields:

m1 cL1ðrIÞ�cL;01
� �

þm2 cL2ðrIÞ�cL;02
� �

¼Γκþvn
μ
; ð2Þ

withmi being the liquidus slope of solute i, rI the position vector of
the solid–liquid interface, cL;0i the solute concentration at equili-
brium near a planar interface for the species i in the liquid, μ the
constant interface kinetic coefficient, vn the normal velocity of the
interface, κ the interface curvature taken positive for convex pro-
file and Γ ¼ γ=L, where γ is the interfacial free-energy and L the
latent heat of the solvent per unit volume. At this point, it can be
underlined that the study of the effect of interface velocity on the
segregation coefficient and liquidus slopes is beyond the scope of
the present analysis. The mass balance at the interface, assuming
that the molar volume of both phases are the same, leads to:

cSi ðrIÞ�cLi ðrIÞ
� �

vn ¼Dii
∂cLi
∂r

�����
rI

; ð3Þ

with i¼1,2 (no summation over repeated indices).

2.1. Applied far-field condition for the concentrations

The case where both concentrations of the diffusing species are
set at constant values in the far-field is first considered. Taking
thus,

cLi ðr-1;θ;φÞ ¼ cL;1i ; ð4Þ
a classical linear stability analysis of the sphere evolution has been
conducted following the approaches developed in [1,3,11]. Fol-
lowing [1,12,13], it is also assumed that cSi ðrIÞ�cLi ðrIÞ � cS;0i �cL;0i ¼
ΔC0

i in Eq. (3) such that it reduces to:

vn ¼
Dii

ΔC0
i

∂cLi
∂r

�����
rI

; ð5Þ

with cS;0i being the equilibrium concentrations in the solid near a
planar interface and i¼1 or 2. The radius of the sphere rI, the
interface velocity vn and interface curvature κ are developed as:

rI ¼ RþδYm
l ðθ;φÞ; ð6Þ

vn ¼
dR
dt

þdδ
dt

Ym
l ðθ;φÞ; ð7Þ

κ ¼ 2
R
þðl�1Þðlþ2Þ δ

R2Y
m
l ðθ;φÞ; ð8Þ

with R being the radius of the unperturbed sphere, δ the infini-
tesimal perturbation amplitude ðδ⪡RÞ, Ylm a spherical harmonics
and t the time variable. The general form of the concentration field
satisfying Eq. (1) is given by:

cLi ðrÞ ¼ A0
i þ

B0
i

r
þ B1

i

rlþ1
δYm

l ðθ;φÞ; ð9Þ

with A0
i ;B

0
i and Bi

1 being three constants that can be determined to
the first order in δ from Eqs. (2), (4), (5), (6), (7), (8) and (9).
Introducing Δ1 ¼Δ1

1 m1þΔ1
2 m2, the constant related to the

supersaturations Δ1
i and liquidus slopes mi of the two species,

with Δ1
i ¼ cL;1i �cL;0i being the concentration gradient of the dif-

fusion species i in the liquid phase, the problem of the radial
growth has been solved as follow. Re-writing Eqs. (2) and (5) to
the zeroth order in δ as,

m1ΔCL
1;0þm2ΔCL

2;0 ¼ 2
Γ
R
þvn;0

μ
; ð10Þ

D11

ΔC0
1

ΔCL
1;0�Δ1

1

R
¼ D22

ΔC0
2

ΔCL
2;0�Δ1

2

R
¼ �vn;0; ð11Þ

with vn;0 and ΔCL
i;0 being the development of the interface velocity

vn and concentration variation cLi ðRÞ�cL;0i to the order zero in δ,
respectively, the unknown concentrations ΔCL

i;0 have been deter-
mined and the radial growth of the particle has been found to be:

vn;0 ¼
dR
dt

¼ΔD
R

Δ1�2Γ
R

KþΔD
μR

; ð12Þ

with

ΔD¼D11D22; ð13Þ

K ¼D11ΔC0
2m2þD22ΔC0

1m1: ð14Þ
Since D11, D22, ΔD and ΔC0

i mi are assumed to be positive, it is
deduced that the constant K defined in Eq. (14) is also positive
[11,14]. The growth or decay of the sphere is thus governed by the
sign of the numerator in Eq. (12). The critical nucleation radius Rn

beyond which the particle growth takes place is given by:

Rn ¼
2Γ
Δ1: ð15Þ

It can be observed from Eq. (15) that when Δ1
1 m140 and

Δ1
2 m240, both solute species contribute positively to the growth

of the sphere in a sense that the minimum radius required for the
growth of the sphere decreases as each Δ1

i mi product increases. It
can also be stated that the basic condition for the particle growth
for the ternary alloy is Δ140. Introducing the dimensionless
coefficient α,

α¼ ΔD
μKRn

¼D11D22L
2γμ

Δ1
1 m1þΔ1

2 m2

D11Δc02m2þD22Δc01m1
; ð16Þ

Eq. (12) of the particule radial growth has been written as:

dR
dt

¼ΔD
R
Δ1 1�Rn

R

1þα
Rn

R

; ð17Þ

and the growth rate of the perturbation has been determined
using a procedure equivalent to the one already detailed in Eqs.
(10) and (11) to determine vn;0. It yields:

1
δ
dδ
dt

¼ l�1

R2

ΔD
K
Δ1

1�Rn

2R
4þ lðlþ3Þþα

Rn

R
ðlþ1Þðlþ2Þ

� �

1þα
Rn

R

� �
1þα

Rn

R
ðlþ1Þ

� � : ð18Þ

The early stages of the shape fluctuation development can be thus
characterized in the linear regime from Eq. (18). Indeed, when
1=δðdδ=dtÞZ0, it is stated that the development of the Ym

l har-
monics becomes favourable on the surface of the sphere. This
condition allows thus for determining a radius of the sphere Ra
beyond which the particle is morphologically unstable, this radius
being related to the absolute stability criterion [1]. Assuming that
the denominator in Eq. (18) is always positive, the critical radius Ra
beyond which an harmonics Yl

m will develop and satisfying [1],
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