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a b s t r a c t

A dynamic stability analysis model is developed for meniscus-defined crystal growth processes. The
Young–Laplace equation is used to analyze the response of a growing crystal to perturbations to its radius
and a thermal transport model is used to analyze the effect of perturbations on the evolution of the
crystal-melt interface. A linearized differential equation is used to analyze radius perturbations but a
linear integro-differential equation is required for the height perturbations. The stability model is applied
to detached solidification under zero-gravity and terrestrial conditions. A numerical analysis is supple-
mented with an approximate analytical analysis, valid in the limit of small Bond numbers. For terrestrial
conditions, a singularity is found to exist in the capillary stability coefficients where, at a critical value of
the pressure differential across the meniscus, there is a transition from stability to instability. For the
zero-gravity condition, exact formulas for the capillary stability coefficients are derived.

Published by Elsevier B.V.

1. Introduction

In detached Bridgman solidification, a gap exists between the
growing crystal and the crucible wall. The distance of this gap can
be on the order of 10–100 μm. The liquid remains in contact with
the crucible wall and a meniscus bridges the gap between the
crucible and crystal at the liquid–crystal–gas triple phase line
(TPL). Observations of detached solidification date back to the
NASA Skylab mission [1,2] and reviews of detached solidification
seen in microgravity experiments have been given by Duffar et al.
[3] and Regel and Wilcox [4]. Observations of detachment in
microgravity experiments were prevalent because the pressure
head in the melt is reduced by six orders of magnitude. Since the
initial microgravity experiments, there have also been numerous
reports of detached solidification under terrestrial conditions.
These reports for Ge and Ge-rich alloys, antimonides, CdTe, and
nonsemiconductor materials are reviewed by Duffar and Sylla [5].
Crystals grown by detached solidification (also referred to as
dewetted solidification) exhibit significant improvements over
crystals grown by the standard methods. Factors leading to such
improvements include a reduction in both thermal and mechan-
ical stresses that normally result from the interaction between the
crystal and crucible and reduced nucleation of grains and twins at
the crucible wall. These improvements have led to considerable

efforts to both understand and control the detached solidification
process. Reviews of these efforts can be found in Cröll and Volz [6]
and Duffar and Sylla [5].

Detached solidification in a crucible, whether by the Bridgman
or vertical gradient freeze (VGF) techniques, requires the existence
of a meniscus between the crystal and crucible. The existence of
this meniscus puts detached solidification into the class of crystal
growth techniques in which capillarity plays a major role. This
class of meniscus-defined techniques includes Czochralski, float-
zone, edge-defined film growth (EFG), and the micro-pulling down
technique. The shape of the crystal in these techniques depends on
capillary forces that are influenced by system parameters that can
vary during growth. A goal in each of these methods is to keep the
shape or diameter of the crystal relatively constant, or at least keep
it to within a defined range. To accomplish that goal, it is necessary
to understand the dynamic stability process.

The exact treatment of the shape stability of growing crystals
involves the three-dimensional numerical modeling of the evolu-
tion of thermal, convective, and solutal fields, coupled with
capillary forces and incorporating the appropriate time-dependent
boundary conditions. Of course, simplifications to a fully three-
dimensional model are often justified and approximate numerical
models can provide insight into the physical mechanisms involved
in shape stability. Numerical models have been developed for
dynamic stability in detached solidification in the limit of zero
gravity [7, 8]. Using a numerical thermocapillary model that
included mass transport, Yeckel and Derby [7] found only a weak
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sensitivity of capillary dynamics to heat transfer. They also con-
firmed a possible mechanism in which undercooling in the melt
ahead of the TPL can lead to reattachment [9]. Balint and Epure [8]
determined that if the residual gas pressure across the meniscus
was kept within a certain range, than the process would remain
stable.

An alternative to full numerical modeling is an approach we
designate as dynamic growth stability (DGS), which is based on
the stability of motion equations developed by Lyapunov [10]. This
approach involves the formulation of a system of linearized
dynamic equations that govern the most significant variables of
the growth process. For many crystal growth processes, including
detached solidification, the most relevant dynamic variables are
the instantaneous radius and interface position of the growing
crystal. Other potential variables are pressures in the system and
additional spatial variables. According to Lyapunov [10], for the
chosen set of variables Xi, there is a coupled set of autonomous
differential equations

dXi

dt
¼ f i X1;X2; :::;Xn;

dX1

dt
;
dX2

dt
; :::;

dXn

dt
;C

� �
; i¼ 1; 2…;n; ð1Þ

where t is time and C represents the set of controlled growth
parameters. We are interested in the stationary values of the
variables Xi which satisfy

f iðX1;X2; :::;Xn;CÞ ¼ 0; i¼ 1; 2;…;n: ð2Þ
Lyapunov [10] proved that solutions to Eq. (1) are stable if the

following set of linearized equations are stable:

dδXi

dt
¼

Xn
j ¼ 1

∂f i
∂Xj

δXj; ð3Þ

where δXi ¼ Xi�X0
i . Stability is achieved when all the roots s of

the following characteristic equation have negative real compo-
nents:

det
∂f i
∂Xj

�sδij

� �
: ð4Þ

The DGS approach is valid when heat and mass transport
dominate the crystallization process and when kinetic effects can
be neglected. This is normally the case in real systems with typical
translation rates. In the DGS approach, only perturbations of the
averaged interface position are considered. This is in contrast with
the Mullins and Sekerka [11,2] linear stability model, where a
general perturbation is Fourier decomposed, and all perturbation
wavelengths of the interface shape are studied. Both the DGS and
Mullins and Sekerka stability analyses ignore the initial transient
stage after the growth process is subjected to an instantaneous
perturbation. Rather, the governing stability equations capture the
evolution of the perturbed state at a later stage. However, the
perturbation transients are usually many orders of magnitude
faster than the characteristic times for the global processes and a
quasi-steady state approximation is usually well justified to sim-
plify the analysis. DGS analysis has been applied to the Czochralski
[13–15], Verneil, float-zone, and several other shaped crystal
growth techniques [15]. The interface position is related to the
thermal transport in the system and is affected by perturbations to
thermal gradients in both the solid and liquid states. Thus, the
analysis can be sensitive to the details of the thermal model. As an
example, there is a factor of 4 difference in the thermal gradient at
the solid-liquid interface between the DGS Czochralski analyses
conducted by Hurle et al. [13] and Satunkin [14].

DGS analysis has been applied to detached solidification in the
limit of zero gravity, considering only the effects of capillarity
[16,17] and under the combined effects of capillarity and heat
transfer [18–20]. It has also been conducted for detached solidifi-
cation under terrestrial conditions, considering only capillary

effects [21–23]. As discussed by Yeckel and Derby [7], under
microgravity conditions heat transfer and capillary effects become
largely decoupled and so dynamic stability depends solely on
capillary effects. This is because in zero gravity, with the absence
of a pressure head, heat transfer cannot change the pressure at the
meniscus and thus has no effect on the meniscus shape or the gap
width. If thermal effects are ignored, then the criterion for
dynamic stability reduces to satisfying a single mathematical
inequality. Namely, that the derivative of the slope of the meniscus
at the TPL with respect to the crystal radius be greater than zero
[15]. In microgravity, satisfaction of this inequality is equivalent to
the criterion that if the meniscus is concave at the TPL then the
growth will be stable [16]. Note that these previous stability ana-
lyses of detached solidification did not consider a thermocapillary
model under terrestrial conditions.

In this work, we develop a linear dynamic stability analysis
which can be applied to meniscus-defined crystal growth techni-
ques. The model considers both capillarity and thermal effects
under terrestrial conditions. Since the problem is linear, the capil-
larity and thermal aspects of the problem are developed indepen-
dently. The capillarity problem follows closely the DGS framework
but the thermal effects are treated differently. Indeed, the governing
equations of the model do not form a system of coupled differential
equations. The model is developed in Section 2 and then applied to
the specific technique of detached solidification in the later
sections.

2. Dynamic stability analysis model

The analysis is restricted to just two transient variables of
interest: the radius R(t) and the interface position H(t). According
to the DGS analysis (see Eq. (3)), the set of linearized stability
equations for these variables becomes

δ _R¼ ARRδRþARHδH; ð5aÞ

δ _H¼ AHRδRþAHHδH; ð5bÞ
where δR is the perturbation of the crystal radius and δH is the
perturbation of the interface from its steady-state position. A
general solution to Eq. (5) will result in a linear combination of
two exponential functions with complex exponents. The pertur-
bations may grow or decay depending on whether the real com-
ponent of these exponents is positive or negative. As described by
Tatarchenko [15], Eq. (4) leads to the following conditions, both of
which must be met for stable growth:

ARRþAHHo0; ð6aÞ

ARRAHH�ARHAHR40: ð6bÞ
Analysis of the crystal growth process provides the four coef-

ficients Aij. Of course, the accuracy of the stability analysis depends
on how well the equations leading to these coefficients capture the
actual physical phenomena that occur during the growth process.
A meniscus shape analysis provides the coefficients in Eq. (5a) and
consists of solving the Young–Laplace equation. A thermal analysis
provides the coefficients that occur in Eq. (5b). In the DGS
approach, the thermal analysis consists of approximating the heat
equation by a one-dimensional differential equation and obtaining
the coefficients by analyzing the perturbed steady-state equations.
In our view, this treatment is physically correct for the AHH coef-
ficient, but a difficulty arises with the coefficient AHR. The problem
is that the perturbation to the thermal field by a change in radius
of the crystal at the interface does not involve a uniform instan-
taneous change in crystal dimension for the entire crystal length.
Rather, we have to consider the previous evolution of the crystal
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