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a b s t r a c t

A non-linear differential equation expressing the new phase nucleation rate in the different steps of the
process (non-stationary and stationary nucleation and in the plateau region) is derived from basic
principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function
describes both nucleation scenarios: the one according to the classical theory, and the other according to
the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on
both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good
agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass
crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation
kinetics law.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of nucleation theory's main objectives is to provide
expressions for the nucleation rate, dn/dt, which is the number
of the new phase nuclei, n, appearing in unit volume (1 cm3) per
unit time, t¼1 s. Since nucleation rate cannot be measured
directly, plots of experimentally determined number densities of
nuclei formed per unit time are used. Such determinations are
done by separating nucleation and growth stages (see Section 3.1).

Experimental studies under constant supersaturation, e.g. [1–2]
have indicated that after some initial time-lag, the early crystal
nucleation stage is slow, then speeds up gradually (nearly expo-
nential upside), and slows down by approaching the final stage
where saturation is established, i.e. a nucleation rate of zero. Many
processes in nature (e.g. plant growth), human society and diverse
inorganic and bio-systems, including amyloid fibril formation [3]
run in a similar way. Such S-shaped progressions that have slow
beginnings, then accelerate and over time reach a climax are
described quantitatively by sigmoid (logistic) functions [4–6].

It is the aim of this paper to elucidate theoretically the increase
in number densities of new phase nuclei, n, formed under constant
supersaturation during nucleation time, t. It is worth noting that
when nucleation is effectively arrested, e.g. using the classical
nucleation-growth-separation principle, NGSP (in which the

nucleation time is set short, and the growth of the nuclei during
this stage is negligible, Section 3.1), the consideration is much
simpler than in Kolmogorov–Johnson–Mehl–Avrami theory
[7–11].

2. Theoretical

According to the nucleation theory, when supersaturation is
established in a system, cluster size distribution changes first from
the previous equilibrium distribution to a new distribution corre-
sponding to the metastable state; this is the physical reason for the
so-called induction time or non-stationary time lag in nucleation.
Due to the random density fluctuations in the mother phase, the
larger the cluster, the longer it takes for it to emerge, and hence,
the new distribution of clusters, smaller than the critical size has
to be formed before the first critical nucleus appears; it is the
latest to appear. However, the gradual accommodation to the
cluster size distribution corresponding to the metastable state
condition continues even after the first nucleus appears, i.e.
throughout the entire initial non-steady-state nucleation period.
Thus, the number of nuclei precursors' increases with time, and
augments the basis for (accelerated) nucleation. It is worth noting
that according to the classical nucleation theory (and to Szilard
chain) critically sized clusters form through attachment of one
molecule to subcritical clusters of size (in�1), in being the number
of molecules constituting the critical cluster. However, according
to Frenkel's “chemical” approach (and some more recent ideas),
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monomer attachment may not be the sole nucleation scenario;
critical and/or supercritical nuclei can form by cluster coalescence
events as well. Somehow or other, the nucleation rate dn/dt
initiates proportionally to the critical nuclei number density, n,
multiplied by the “birth” frequency, k: dn/dt¼kn. Thus, starting
with a single nucleus, the nucleation process advances with time
in an exponential manner: n¼exp(kt).

The initial non-steady-state period is followed by a stationary
nucleation, lasting for a limited time only; afterwards, dn/dt
decreases continuously, until becoming zero in the plateau region
of the n vs. t dependences. This is a typical example of a self-
limiting increase where deceleration can be attributed to exhaus-
tion of particles (and/or centers), which are active for nucleation;
known generally as nucleants, such particles are always present in
protein solutions. The nucleants are gradually occupied by nuclei
(generated by rate kn) and ingested by local nucleation exclusion
zones, which form around growing nuclei by rate ωn. Because the
two decelerating factors act in parallel, the probability for their
simultaneous action is ωkn2, ω being a constant: dn/
dt¼kn�ωkn2. The condition to have a plateau in the n vs. t
dependence is dn/dt¼0. Hence, ω¼1/ns, where ns is the saturated
nuclei number density, and

dn
dt

¼ kn 1� n
ns

� �
ð1Þ

This is a first-order non-linear differential equation that can be
solved exactly. The integral of this equation shows a sigmoidal
dependence of n on t (Fig. 1). Note however that the overall
supersaturation does not change with time for short nucleation
times only (e.g. as by using NGSP); the reason is the negligible
amount of solute, which is included in the extremely small nuclei.

Nucleation acceleration and deceleration tendencies have to
equilibrate. This occurs at the point when the maximum nuclea-
tion rate is reached. Hence, at this point the second derivative is
d2n/dt2¼0, and n/ns¼0.5. Putting this value in Eq. (1), we obtain
the maximum nucleation rate

dn=dt
� �

max ¼ kns=4 ð2Þ

It is seen that k models the maximum nucleation rate.
Eq. (2) is used to calculate the time tc, when the maximum

nucleation rate is reached, and n¼ns/2. With this end in view, we
draw a straight line, which is tangential to the sigmoid point
n¼ns/2 (the dashed line in Fig. 1); its linear equation is

n¼ aþknst=4 ð3Þ

For t¼tc at n¼ns/2, it results in

a¼ ns 1–ktc=2
� �

=2 ð4Þ
And with this a�value the tangential line equation transforms

in

n¼ ns

2
1�ktc

2

� �
þkns

4
t ð3:1Þ

Now, denoting the intersection point of the tangential straight
line with the abscissa by to (Fig. 1), we obtain

t0 ¼ tc�2
k
; and tc ¼ toþ2=k ð5Þ

It should be noted that to is related to the induction time τ (see
Section 3.3).

The symmetry of the sigmoid curve shows that ns is reached at
time tp¼2tc (Fig. 1). With the above parameters, and after some
mathematical transformations, the integral of Eq. (1) results in the
following logistic (sigmoid) function

n¼ ns

1þexp �k t�tcð Þ� � ð6Þ

Sigmoid's midpoint is reached at t¼tc, because exp[�k
(t�tc)]¼1; and when exp[k(t�tc)]441, n-ns, which is the final
nucleation stage.

The coefficient k is the rate determining constant (it has
dimension of reciprocal time), and is of special interest in the
physics of new phase nucleation [12]. Eq. (1) shows that at the
beginning of the nucleation process, when n¼1, dn/dt¼k(ns�1)/
ns; and with ns441, dn/dtEk. However, there are more practical
ways to determine k. Firstly, by fitting experimental data in Eq. (6)
the independent parameters k and tc are obtained, e.g. Table 1 (and
the comments in Section 3.2). Still another possibility of evaluating
k is by using the time ts, when the saturated nuclei number density
ns is reached (see Fig. 1), according to the tangential line
equation (3.1)

ts ¼ tcþ2=k ð7Þ
which combined with Eq. (5) renders (also see Fig. 1)

k¼ 4= ts�toð Þ ð8Þ
Besides the simultaneous action of the two decelerating factors,

there are two more possibilities to consider. The first one assumes
an exceptionally pure system (e.g. vapor phase) where no nucle-
ants are present and the homogeneous nucleation is decelerated
solely because of the nucleation excluded zones arising around the
nuclei; increasing in number, such zones may decrease noticeably
the volume where nucleation can still proceed; an exponential
increase in nuclei number density is expected to occur at constant
supersaturation. But system's overall supersaturation is constant
for sufficiently short nucleation time only; soon or latter, it drops

Fig. 1. Sigmoid curve with characteristic points (see text); the nucleation induction
time lies in the negative part of abscissa.

Table 1
Data calculated using Eq. (6) for insulin crystal nucleation in bulk solution, on glass
surface, at the air/solution interface and in the three-phase angle air/solution/glass.

ln(c/
ce)

Bulk insulin crystal nucleation On-glass Air/
solution

3-phase
angle

ns tc [s] k�104

[s�1]
R2 k�104

[s�1]
k�104

[s�1]
k�104

[s�1]

2.99 4921 6262 6.5 0.971 – – –

3.22 39536 4416 7.74 0.990 5.23 – –

3.31 52768 3305 12.42 0.986 – – –

3.40 74609 2700 19.94 0.988 – – –

3.48 104624 1380 20.5 0.951 – 9.05 –

3.55 110987 1403 23.4 0.984 35.9 12.77 –

3.69 149132 1462 20.79 0.986 31.87 14.38 15.5
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