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a b s t r a c t

Applicability of the three-dimensional Alexander-Haasen (AH) model for the analysis of dislocation
distributions in single-crystal silicon has been estimated. The numerical results obtained from the AH
model agree well with the experimental data for both CZ-Si and FZ-Si crystals with the axis in the [001]
direction but do not completely agree with the experimental data for the FZ-Si crystal with the axis in
the [111] direction. The inapplicability of the AH model in a crystal with the axis in the [111] direction
may arise from the neglect of dislocation propagation in this model, because the dislocation propagation
in a crystal with the axis in the [111] direction is more active than that in a crystal with the axis in the
[001] direction. Therefore, to increase the applicability of the AH model, it is necessary to include the
effect of dislocation propagation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dislocations in crystalline silicon have been identified as one
of the most relevant defect centers for efficiency of photovoltaic
devices [1]. The demand for increased solar cell efficiencies
necessitates a reduction in the number of dislocations. Both
experiments and numerical simulations can be used to reveal
how the number of dislocations can be reduced.

Experimental measurement is an important means for evaluat-
ing the final quality of crystalline silicon [2–5], but it has its
limitations. Dislocations in silicon are usually activated in more
than one slip system. Identifying the dislocations activated by
every slip system in experiments is a challenging task. Further-
more, because the generation of dislocations occurs over a long-
term crystal growth process, experimental work cannot identify
the exact time and site at which the dislocations are generated
during the growth, and thus cannot directly correlate the practical
growth conditions to the final quality of crystal.

Numerical simulation provides an effective supplement for
analyzing the final quality of the crystal. Many simulations have
been done by using the advanced 3D Alexander-Haasen (AH)
model [6–8], which considers multislip, immobilization of mobile
dislocations, jog formation between the different slip systems and
its influence on dislocation generation, and internal stress due to
short-range interactions from the total dislocation density. Many

valuable conclusions have been obtained by using this model.
However, until now, there has been no evaluation of the applic-
ability of this model. It is unclear whether it can be used for all
types of single crystal silicon, and whether some limitations of this
model exist.

Therefore, in this article we will focus on answering the
following questions: Can the Alexander-Haasen model be used to
describe the different type of single crystal silicon? If it cannot,
what shortcoming of the model is the reason for this and how can
the model be improved?

2. Evaluation process

To evaluate the AH model, two sets of experiments that used
different types of single crystal silicon have been performed
previously by another research [15]. The first set of experiments
was performed on a CZ-Si crystal ingot with the axis in the [001]
direction, while the second set of experiments was performed on a
FZ-Si crystal ingot with the axis in the [111] direction. The two sets
of experiments used the same heating and cooling processes. Thus,
the differences between the two sets of experiments lie in crystal
type and axis orientation.

For the most accurate comparison of the simulation and
experimental results, numerical simulations must strictly follow
the experimental operating conditions. To achieve this, a solver for
the accurate control of the temperature history inside the simu-
lated furnace was developed. Using this solver, two points on two

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jcrysgro

Journal of Crystal Growth

http://dx.doi.org/10.1016/j.jcrysgro.2014.11.011
0022-0248/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ81 92 583 7744; fax: þ81 92 583 7743.
E-mail address: gaobing@riam.kyushu-u.ac.jp (B. Gao).

Journal of Crystal Growth 411 (2015) 49–55

www.sciencedirect.com/science/journal/00220248
www.elsevier.com/locate/jcrysgro
http://dx.doi.org/10.1016/j.jcrysgro.2014.11.011
http://dx.doi.org/10.1016/j.jcrysgro.2014.11.011
http://dx.doi.org/10.1016/j.jcrysgro.2014.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.11.011&domain=pdf
mailto:gaobing@riam.kyushu-u.ac.jp
http://dx.doi.org/10.1016/j.jcrysgro.2014.11.011


heaters are monitored and the temperatures at the two monitored
points are required to evolve according to a preset experimental
curve. The details of the method can be found in Reference [9].

For completeness, first the AH model is briefly introduced, and
then the experimental conditions are given.

2.1. Three-dimensional Alexander–Haasen model

The three-dimensional Alexander-Haasen model has been
introduced in References [6–8]. Here, we present a brief overview
of the formulas as follows.

Silicon crystal has an fcc structure that has twelve slip direc-
tions [9,10]. The resolved shear stress for each slip direction can be
calculated from the tensor transformation technique using the
stress components obtained from a three-dimensional analysis or
an axisymmetric analysis [10]. After the resolved shear stress τðαÞ

in the α slip direction is obtained, the creep strain rate dεðαÞpl =dt is
given by the Orowan relationship [11]:

dεðαÞpl

dt
¼NðαÞ

m vðαÞb; ð1Þ

where the subscript m denotes the mobile dislocation, the super-
script α denotes the slip direction, b is the Burger's vector, N is the
dislocation density, and v is the slip velocity of the dislocation.

The rate of the mobile dislocation density dNα
m=dt in the slip

direction α is given by

dNðαÞ
m

dt
¼ KNðαÞ

m vðαÞτðαÞef f þKnNðαÞ
m vðαÞτðαÞef f ∑

βaα
f αβN

ðβÞ
m �2rcNðαÞ

m NðαÞ
m vðαÞ;

ð2Þ

where τef f is the effective stress for dislocation multiplication, K
and K* are the multiplication constants, rc is an effective dipole half
width, the f αβ coefficient is given a value of either one or zero
according to whether a jog is formed on a screw dislocation of
system α when cut by a forest dislocation of system β. On the
right-hand side of Eq. (2), the first term models the dislocation
increase due to the glide on the slip plane, the second termmodels
the formation of jogs on a screw dislocation and the consequent
expansion through spiral formation, and the third term models the
sink for the mobile dislocation, i.e., immobilization. The values of
K, K*, and rc were given in References [6–8].

For more clear understanding of Eq. (2), some physical expla-
nations are needed. The first term on the right-hand side of Eq. (2)
is based on the assumption that the increase in the length of
dislocations in unit time is proportional to the area swept the
mobile dislocations [13,14]; the second term is based on the
assumption that the rate of formation of jogs is proportional to
the number of times dislocations in different slip system cut each
other, which can be modeled by a product of dislocation densities
on the two slip systems [16]; the third term is based on the
assumptions that mobile dislocation segments belonging to the
same slip system and gliding on parallel planes can trap each other
and form dipolar structures, and that rate of dipole formation is
equal to the rate of immobilization of mobile dislocations [12].

The immobilization rate dNðαÞ
i =dt is expressed as follows [12]:

dNðαÞ
i =dt ¼ 2rcNðαÞ

m NðαÞ
m vðαÞ: ð3Þ

The slip velocity of dislocation v is given by

vðαÞ ¼ v0
τðαÞef f

τ0

 !m

exp � U
kbT

� �
; ð4Þ

where v0 ¼ 5000 m=s,τ0 ¼ 1MPa, m¼ 1, and U ¼ 2:2 eV are used
for crystal silicon [12]. The effective stress necessary for the

dislocation motion is given by:

τðαÞef f ¼ τðαÞ �τðαÞi �τðαÞb

D E
; ð5Þ

where τðαÞ is the resolved shear stress, τðαÞi is the necessary stress
for overcoming short-range obstacles, τðαÞb is the internal long-
range elastic stress generated by mobile dislocations [6–8,12], and
xh i ¼ x for x40, and zero for xr0.

The short-range internal stresses τðαÞi emanates from the total
dislocation densities defined by [12,17]

τðαÞi ¼ μb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
β
aαβðNðβÞ

m þNðβÞ
i Þ

s
; ð6Þ

with the coefficient aαβ given in references 12.
The long-range internal stresses τðαÞb emanates from mobile

dislocations defined by [12,18]

τðαÞb ¼ μb∑
β
Aαβ

ffiffiffiffiffiffiffiffiffi
NðβÞ

m

q
; ð7Þ

where the coefficient Aαβ is geometrically determined [18].
After dislocation densities and creep strains at all of the slip

directions are solved, βthe total dislocation density and the total
creep strain can be expressed as:

Nm ¼ ∑
12

α ¼ 1
NðαÞ

m ; ð8Þ

εpl ¼ ∑
12

α ¼ 1
εðαÞpl

1
2
ðnðαÞ � mðαÞ þmðαÞ � nðαÞÞsignðτðαÞÞ: ð9Þ

where nðαÞ and mðαÞ are the normal unit vector of the slip plane
and the unit vector of the slip direction, respectively.

2.2. Operating conditions for experiments

Two sets of experiments were performed using an axisym-
metric unidirectional solidification furnace. In the first experiment,
a CZ-Si ingot with the axis in the [001] direction was used;
whereas in the second experiment, an FZ-Si ingot with the axis
in the [111] direction was used. Both crystals are axisymmetric and
almost dislocation-free. The crystals were 90 mm in diameter and
80 mm in height. The diameter of the crucible was 96 mm. Thus, a
small gap of 3 mm between the crystal and the crucible was
maintained to avoid ambiguous boundary conditions between the
crystal and the crucible. Furthermore, to avoid complexity, only
the heating and cooling processes without solidification were
used. The basic configuration of the furnace is described in
Reference [9] and was described again for clarity (Fig. 1). The
two monitoring points A and B are located on the top and side
heaters, respectively.

To homogenize the temperature distribution inside the furnace,
we required the temperature histories at the monitoring points A
and B to be the same by automatically adjusting the two power
settings on the top and side heaters. The preset temperature
history (Fig. 2) must be followed by both simulation and experi-
ment. In experiment, this can be realized by an automatic control
technique, such as proportional–integral–differential (PID) control.
In the simulation, a numerical solver that simulates the automatic
control process has been developed for accurate control of the
temperature history inside the furnace [9].

Fig. 2 shows the calculated temperature curves for points A and B.
The calculated temperatures fit the preset temperature well except
in the low-temperature region of the cooling process (o600 1C).
The main reason for the difference between the designed and the
calculated temperatures in the low-temperature region of the
cooling process is that the temperature cannot linearly decrease
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