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a b s t r a c t

The effect of natural convection on solute segregation in the horizontal Bridgman configuration is
studied. The objective is to check whether a single non-dimensional number, based on the fluid flow
induced interface shear stress, is able to capture the physics of the mass transport phenomena. A number
of heat and mass transfer numerical simulations are carried out in the laminar convection regime, and
the segregation results are found to be in good agreement with the predictions of the scaling analysis. At
the higher convective levels relevant for the comparison with existing experimental data, a direct
computation of the segregation phenomena is not possible, but numerical simulations accounting for
turbulence modeling can provide the interface shear stress. With this procedure, a good agreement
between the experimentally measured segregation and the predictions of the scaling analysis is again
observed, thus validating the choice of the interface shear stress as a key parameter for the segregation
studies.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In melt growth technologies, solute or impurity segregation often
represents an important issue, e.g. for the control of solidification in
concentrated semiconductor alloys [1] or for the purification of
upgraded metallurgical grade Si feedstock in photovoltaic applica-
tions [2]. For such an issue, the role of both Fickian diffusion and
convection has been widely recognized in the past, but a global
understanding is still missing. As a matter of fact, the global heat,
momentum and mass transport problem features a variety of length
scales, particularly due to the existence of thin solute boundary layers
in the vicinity of the solidification interface which often prevents an
accurate global numerical modeling of the growth configuration.
Therefore models allowing to somehow decouple species transport
from the heat and momentum transport problems can be very
useful. In such a perspective, order of magnitude analyses can
provide interesting insights, particularly if the objective is primarily

to determine whether impurity transport is mainly driven by
convection or by diffusion. As a matter of fact, it must be understood
that such approaches cannot be expected to be quantitatively
accurate, but they can provide scaling laws and as such useful
insights in the physics of the transport phenomena.

Attempts in this direction are not new, starting from the
pioneering work of Burton et al. [3], later on referred to as BPS, in
their model Czochralski configuration. In this pioneering work, BPS
managed to relate the characteristics of the forced convection flow
to the effective partition coefficient thanks to a newly introduced
convecto-diffusive parameter. This pioneering work was later on
refined by Wilson [4], who proposed a scientifically sound defini-
tion for the solute boundary layer thickness and the convecto-
diffusive parameter. In addition to Czochralski growth, this
approach proved very useful for the interpretation of the numerical
simulation results of Kaddeche et al. [5] in the horizontal Bridgman
configuration.

On a related line of thought, Ostrogorsky and Müller [6]
proposed a model based on a mass balance and the related solute
fluxes across the growth interface to yield the effective partition
coefficient and the boundary layer thickness. In a couple of recent
papers, Ostrogorsky [7] relied on correlations for the convective
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mass transport coefficient in various fluid flow configurations to
derive estimates of the partition coefficient. A common feature of
all the above literature is that knowledge of some external features
of the involved fluid flow is necessary as an input in the mass
transport problem. As a consequence the results are presented as a
function of various non-dimensional groups that a priori charac-
terize the convection problem.

Such is not the case in the recent work by Garandet et al. [8]
where the authors proceed to define the local velocity field based
on the interface shear stress induced by the motion of the fluid. As
such, the physical nature of the convective driving forces does not
explicitly appear in the theoretical frame, which can, as a con-
sequence, be considered universal in nature. It should of course be
stated that the interface shear stress may not be fully familiar to
the experimenter, but in the frame of an approach where numer-
ical simulations are carried out for heat transfer and fluid flow, it is
readily available as a result of the computations.

In any case, comparisons with numerical results obtained in the
lid driven cavity configuration support the validity of the theory [8]
and the ability of the scaling analysis to capture the physics of the
segregation phenomena. However, in part due to the fact that lid
driven convection is rarely encountered in crystal growth devices,
the necessity of further tests for this model had been mentioned [8].
In this respect, the horizontal Bridgman configuration presents a
number of advantages, due to a well-defined convective driving
source, and more important to the existence of a relatively large and
reliable numerical [5] and experimental [9–10] data base.

In Section 2, we will first briefly outline the theoretical model
along with the procedures involved in the determination of the
numerical and experimental data base that will be used for
the comparisons. We will then proceed in Section 3 to the
presentation of the results, along with a discussion of the validity
of the model.

2. Background and procedures

2.1. Model formulation

Our purpose here is only to briefly recall the outline of the
procedure. For more details the interested reader is referred to
Ref. [8]. Our starting point is the convecto-diffusive mass balance
equation, which governs the concentration C of an impurity or a
dopant (expressed here as mass fraction) in a frame moving with
the solid–liquid interface at a rate VI along the Z-direction

∂C=∂tþðV:∇Þ C ¼D∇2CþVI∂C=∂Z; ð1Þ
V and D respectively standing for the convective velocity, solution
of the Navier–Stokes equations, and the impurity or dopant
diffusion coefficient. Closed form analytical solutions to Eq. (1)
exist only in rare cases, such as diffusion controlled growth (V¼0),
thus requiring the recourse to numerical simulations or simple
order of magnitude analyses, as carried out in [8]. The model is
based on approximate expressions in a two-dimensional repre-
sentation for the components of the convective flow parallel and
normal to the interface, denoted respectively as U (along the
vertical coordinate X) and W (along the horizontal coordinate Z).
More specifically, it is supposed that away from the cavity lateral
walls, U and W can be written as follows:

U Zð Þ � ðτ=ηÞ Z; W Zð Þ � ðτ=ηHÞ Z2; ð2Þ

where τ represents the interface shear stress, generally defined as
τ¼ η ∂vt=∂xn

� �
I where vt is the tangential velocity, xn is the normal

direction and the subscript I indicates an evaluation at the inter-
face (here, with our notations, τ¼ η ∂U=∂Z

� �
I), η is the dynamic

viscosity of the fluid, H is a characteristic macroscopic dimension

of the solid–liquid front and Z is the distance from the point of
interest to the interface. At this point, it should be mentioned that
the concept of ‘interface shear stress’ may appear questionable
since, from a physical standpoint, the key physical parameter
defining the flow field is rather the gradient of the tangential
velocity in the direction normal to the interface. Nevertheless, in
Newtonian fluids (as those considered in the present work), this
quantity is linearly related to the interface shear stress and can be
written as τ=η as expressed in Eq. (2).

In addition, the concept of interface shear stress is commonly
used in the turbulence literature in the context of wall bounded
shear flows, resulting in the fact that as mentioned earlier, the
values of the interface shear stress are readily available as a result
of the numerical simulations in turbulent flow conditions in
standard commercial codes. Finally, from an experimental stand-
point, it should also be stated that a number of techniques have
been developed for the measurement of wall shear stresses [11]. In
view of all these arguments, reference will be made to interface
shear stress all through the paper, even though it should be
remembered that a presentation of the results in terms of normal
velocity gradients would also be possible.

In any case, as discussed in [8], it is expected that the
expressions given by Eq. (2) will be adequate in both laminar
and turbulent convective configurations if in the latter case, U and
W are meant to represent the components of the Reynolds
averaged velocity field. The scaling analysis then allows deriving
the value of the convecto-diffusive parameter Δ (namely the
dimensional solute boundary layer thickness δ normalized by
D/VI) as a function of a ‘universal’ nondimensional group given as

B¼ τD2=VI
3ηH: ð3Þ

The analytic expression obtained is given in Ref. [8]. For the
sake of completeness, it should be recalled that the convecto-
diffusive parameter Δ is of paramount importance in segregation
problems, since it can be univocally related to the thermodynamic
and effective partition coefficients k and keff according to the
formula keff¼k/(1�(1�k)Δ) [4].

2.2. Numerical procedures

Our objective in this section is again only to outline the
numerical procedures used in the present work. We actually relied
on two distinct codes, a two dimensional in-house program for a
detailed comparison with the predictions of the scaling analysis in
laminar fluid flow configurations, and the commercial software
Fluent, which was used for the derivation of the interface shear
stress in turbulent conditions in order to test the scaling analysis
against the experimental data.

Regarding the in-house code [5], the governing equations were
solved in a vorticity–stream function formulation using an alternat-
ing direction implicit (ADI) technique, with a finite-difference
method involving forward differences for time derivatives and
Hermitian relationships for spatial derivatives, resulting in a trunca-
tion error in O(Δt2, ΔX4, ΔZ4), i.e. of second and fourth orders in time
and space, respectively (see Hirsh [12] and Roux et al. [13]). The mesh
used to solve the problem was generated by a technique initially
proposed by Thompson [14]. The node density is of course larger
near the side walls of the cavity, especially in the vicinity of the
growth interface. As shown in [5], a 25�101 grid guarantees a
sufficient accuracy for such studies. Regarding physical assumptions,
only the thermal convection in the Boussinesq approximation was
considered, which amounts to assuming that the alloy is sufficiently
dilute for solutal buoyancy to be negligible.

A schematic of the problem is shown in Fig. 1. In dimensional
form, the parameters of the problem are the cavity width H, length L,
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