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In this work we present a newmixture theory of a liquid solvent containing completely dissociated ions to study
the space charge layer of electrolytes in contact with some inert metals. We incorporate solvation shell effects (i)
in our derivation of the mixing entropy and (ii) in the pressure model. Chemical potentials of ions and solvent
molecules in the incompressible limit are then derived from a free energy function. For the thermodynamic
equilibrium the coupled equation system of mass and momentum balance, the incompressibility constraint
and the Poisson equation are summarized. With that we study the space charge layer of the electrolytic solution
for an applied half cell potential and compare our results to historic and recent interpretations of the double layer
in liquid electrolytes. The novelties of themodel are: (i) the potential and pressure dependence of the free charge
density in equilibrium (ii) the calculation of entropic contributions due to solvated ions, and (iii) the natural
prediction of a solvated anion saturation layer which we finally reinterpret as Stern layer.

© 2014 Elsevier B.V. All rights reserved.

First theoretical investigations of the space charge layer in electrolyt-
ic solutions date back around 100 years to the work of L. Gouy [1], D.
Chapman [2] andO. Stern [3], who extend the original idea of Helmholtz
that the electrochemical interface is basically a simple capacitor. The
picture drawn from that time stated a charge layer which exponentially
decays (diffuse layer) in addition to an adsorption layer (Stern layer).
Grahame's profound measurements [4] on the capacity of the double
layer, which were in disagreement to the commonly accepted theory
at that time, gave the hint to Bikerman [5] in 1942 that the Boltzmann
distribution (nα∝e−zαφ xð Þ) is inappropriate, as no volumetric effects of
the ions are considered. Even though he was the first who extended
the double layer model with respect to volumetric restrictions (steric
effect), he was not able to reconstruct the measured capacities of
Grahame, and his model was not recognized widely. All modeling
efforts at that time had in common that the species densities nawere heu-
ristically modeled as function of the electrostatic potential φ, in order to
obtain an explicit representation of the free charge density q = q(φ).
The space charge layer was then obtained by solving the (non-linear)
Poisson-equation

div ε0 1þ χð Þ∇φð Þ ¼ −q φð Þ: ð1Þ

The theoretical description of electrolytic solutions tended towards
coupled Poisson–Nernst–Planck equation systems, which, in equilibrium,
also lead to explicit representations q = q(φ). The main difference,
however, is that such representations are now derived from free energy

functions, which describe the respective material. Borukhov et al. stated
1997 a free energy [6] which incorporates ion size effects in their entropy
of mixing and consequently derived a relation q = q(φ), for which the
Poisson equation gave qualitative satisfactory results. However, their
main parameter a (ion radius) was quite arbitrary set to 1 nm. For an
extensive survey of the various continuum modeling approaches we
refer to the instructive review of Bazant et al. [7].

Nevertheless, almost all continuummechanical approaches to model
the space charge layer in real electrolytic solutions startwith some a priori
knowledge of its actual structure, which is then used to tailor a specific
model for the desired problem. In contrast, a modern material model
for liquid electrolytes should be able to self-consistently predict the struc-
ture of the double layer, i.e. the decomposition of the Stern-layer and the
diffuse layer.

In this letter we derive a free energy function which embodies solva-
tion effects of the dissociated ions, in addition to mechanical stress, and
calculate the chemical potentials of all constituents in the incompressible
limit. With this, we show that in the thermodynamic equilibrium Eq. (1)
is only a special case of the generic coupled equation system

div ε0 1þ χð Þ∇φð Þ ¼ −q φ; pð Þ ð2Þ

∇p ¼ −q φ;pð Þ∇φ; ð3Þ

which self consistently computes φ and the elastic pressure p. Themodel
is thenused (i.e. solvednumerically) to propose the actual structure of the
space charge region and its a posterioridecomposition in diffuse and Stern
layer regions.
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Consider amixture ofN 0 solventmolecules andN α ;α ¼ 1;…;N ions
(with charge number za andmassma), with the total number of particles
N ¼ ∑N

α¼0N α . Classically it is assumed that all particles of the mixture
may exchange, leading to the numberWBoltz of micro-states as

WBoltz ¼ N
N 0N 1N N

� �
: ð4Þ

In contrast, we consider a mixture in which some of the solvent
molecules are bounded to the ions, forming solvated cations and anions
[8]. Hence, theN 0 solventmolecules split intoN F

0 free solventmolecules
and N B

0 bounded solvent molecules,

N 0 ¼ N F
0 þN B

0: ð5Þ

Each ion of constituent α is assumed to bound κα solvent molecules,
and thusN B

0 ¼ ∑N
α¼1καN α . The exchange of a particle in the solvation

shell with a free solventmolecule is thus not an admissible permutation
(c.f. Fig. 1).

The number of (entropically) exchangeable particles eN is hence

eN ¼ N F
0 þ

XN
α¼1

N α ; ð6Þ

leading to the number of possible configurations

W ¼ eN
N F

0 ;N 1;…;N N

� �
ð7Þ

and thus to a mixing entropy S = k B ln(W) of

S ¼ −kB N F
0 ln N F

0

N

� �
þ
X

α¼1
N α ln N αeN

� �� �
; ð8Þ

where the Sterling approximation has been used. Transition to particle
number densities N α

V →nα ; α ¼ 0;1;…;N with en ¼ nF
0 þ∑N

α¼1 nα
and the introduction of

ey0 :¼ nF
0en and eyα :¼ nαen

XN
α¼0

eyα ¼ 1
� �

; ð9Þ

leads to a configurational entropy contribution of the free energy as

ρψS ¼ kBTen XN
α¼0

eyα ln eyαð Þ
� �

: ð10Þ

Mechanical contributions to the free energy are derived from a
simple linear elastic relation

p ¼ pR þ K
VpR

V
−1

� �
; ð11Þ

where p is the elastic pressure, VpR the volume of the mixture under
pressure pR, and V the occupied volume [9]. For the volume VpR a linear
relation to the number of particles N α ;α ¼ 0;1;…;N is assumed, i.e.

VpR ¼
XN

α¼0
vRα T; pR

� �
N α ; ð12Þ

where vα
R(T, pR) denotes the partial molar volume of species α at tem-

perature T and reference pressure pR. Note that N 0 denotes here the
total amount of solvent molecules. Using the relation between free sol-
vent molecules N F

0 and bounded solvent molecules N B
0 gives

VpR ¼ vR0N F
0 þ

XN
α¼1

καv
R
0 þ vRα

� �
N α : ð13Þ

Expectably, the partial molar volume of a solvated ion consists of the
volume of the central ion itself and the volume of κα-solventmolecules (
κα vR0 þ vRα :¼ evRα ; α ¼ 1;…;N). With

H ¼ vR0ey0 þXN
α¼1

καv
R
0 þ vRα

� �eyα ; ð14Þ

the pressure of the mixture is

p ¼ pR þ K enH ey0;ey1;…;eyN−1Þ−1Þðð ð15Þ

and hence dependent on the (local) composition. Since p ¼ − ∂ ψ
∂ ρ−1 [10],

where ρ denotes the mass density ρ ¼ ∑N
α¼0mαnα , one obtains the

mechanical free energy

ρψM ¼ K−pR
� �

1−enHð Þ þ KenH ln enHð Þ ð16Þ

upon integration and ρψM vanishes for p = pR. The free energy density
of an electrolytic mixture is thus

ρψ ¼
XN
α¼0

nαψ
R
α þ ρψS þ ρψM ð17Þ

where ψα
R denotes the free energy of species α in the reference state

(there is a further contribution, viz. −1
2ε0χj∇φj2 , which, however,

drops in the chemical potential for χ = const).
For (T, n0,…, nN) as independent variables, the chemical potentials of

the (unsolvated) ions and (all) solvent molecules are defined as [11]

μα T ;n0;…;nNð Þ ¼ ∂ρψ
∂nα

α ¼ 0;1;…;N : ð18Þ

Note that the solvation effects are implicitly covered in the free ener-
gy function ρψ, independent of the set of variables. For the incompress-
ible limit (K→ ∞) the new set of variables is T; p;ey1;…;eyNÞð [9] and the
chemical potentials are

μ0 ¼ ψR
0 þ kBT1n ey0ð Þ þ vR0p ð19Þ

μa ¼ ψR
a þ kBT1n eyað Þ−kBTka1n ey0ð Þ þ vRap: ð20Þ

Note, incompressibility K → ∞ implies VpR

V →1 and thus en
vR0ey0 þ∑N

α¼1 καvR0 þ vRα
� �eyαÞ! ¼ 1

�
.

The free charge density q is related to the species densities via q ¼ e0en∑N
α¼1 zαeyα .
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Fig. 1. Each ion is supposed to bind some solvent molecules and forms a solvated ion. The
mixture thus consists of free solventmolecules (gray), solvated anions (blue) and solvated
cations (red). An exchange between a free and bounded solvent molecule is a prohibited
permutation, while exchanging a solvated ion and a free solvent is allowed. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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