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a b s t r a c t

A thermo-gravitational convection and impurity transfer in the melt were investigated using a simplified
numerical model for Bridgman GaSb(Te) crystal growth in microgravity conditions. Simplifications were
as follows: flat melt/crystal interface, fixed melt sizes and only lateral ampoule heating. Calculations
were carried out by Ansys sFluents code employing a two-dimensional Navier–Stokes–Boussinesq and
heat and mass transfer equations in a coordinate system moving with the melt/crystal interface. The
parametric dependence of the effective segregation coefficient Keff at the melt/crystal interface was
studied for various ampoule sizes and for microgravity conditions. For the uprising one-vortex flow, the
resulting dependences were presented as Keff vs. Vmax—the maximum velocity value. These dependences
were compared with the formulas by Burton–Prim–Slichter's, Ostrogorsky–Muller's, as well as with the
semi-analytical solutions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The effective segregation coefficient Keff is the important
parameter for analysis of impurity segregation in melt crystals
growth. Its value depends on a structure and intensity of the melt
flow that substantially affects the impurity flux from the melt into
the crystal. Estimations of Keff can be found in many publications,
basically using two approaches. The first one, quite simple,
consists of an application of approximate analytical hydrodynamic
formulas [1,2] for the value of the flow velocity near the melt/
crystal interface (MCI). This approach is widely used now in
technological practice [3]. The second approach is based on the
complete numerical simulation of the crystallization process, and
requires specialized program codes, a significant computational
cost, and high user qualifications [4].

In this paper, a thermo-gravitational convection and impurity
transfer in the melt for the Bridgman GaSb(Te) crystal growth in
microgravity are calculated using a numerical model with the
following simplifications: flat MCI, fixed melt volumes, and only
lateral ampoule heating. Parametric calculations were carried out
employing a program code AnsyssFluents, which was supplemen-
ted by the author's subroutines in Cþþ , taking into account a
crystallization model [5,6]. Numerical solutions are compared with
the data calculated by a semi-analytical model [5], and using

analytical formulas of Burton–Prim–Slichter (BPS) [1] and Ostro-
gorski–Muller (OM) [2].

2. Simplified numerical model

A crystallization process is considered for the constant MCI
velocity VS¼(VS,0) in a flat melt layer (X,Y) of thickness H and
length L at a gravitational field g¼(0,�g) for the following thermal
conditions: TS¼985 K (the melting point) and different values of
TW¼996C1058 K (Fig. 1), which determine the variation of the
longitudinal temperature gradient. The equations of Navier–
Stokes–Boussinesq and heat and mass transfer in a melt may be
written in the coordinate system associated with moving MCI in
the vector form [5]:

∂V=∂tþ½ðV–VSÞ∇�V ¼ –1=ρ∇PþνΔVþgβTT ;

divV ¼ 0;
ρСpf∂T=∂tþ½ðV–VSÞ∇�Tg ¼ λΔT ;

∂C=∂tþ½ðV–VSÞ∇�C ¼DΔC:

ð1Þ

Solving this system, the velocity vector V¼(VX,VY), the pressure P,
the temperature T and the impurity concentration C dependence on
the spatial coordinates and time are determined.

For the melt boundaries: V¼0; TS, TW are defined as shown in
Fig. 1, and the top and the bottom walls are thermo-isolated.

The initial impurity concentration in the melt: C¼C0; the bound-
ary condition for the boundary at the MCI is D∇C¼(1 – K0)VSC, and
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∇C¼0—for all other boundaries in the case of a continuous crystal-
lization for the whole ingot length. For the GaSb(Te) melt, the
physical parameters are as follows: density ρ¼6.06 g/cm3, kinematic
viscosity ν¼0.0032 cm2/s, thermal conductivity λ¼1.02�106 erg/
cm�K� s, heat capacity CP¼3.3�106 erg/g�K, thermal expans-
ion coefficient βT¼9.6�10�5 K�1, tellurium diffusion coefficient
D¼5�10�5 cm2/s [7], and the equilibrium segregation coefficient
K0¼0.37. The crystallization rate was constant: VS¼3�10�4 cm/s,
and the microgravity level varied as: g/g0¼1.6�10�5C2.2�10�3;
g0¼980 cm/s2.

For numerical analysis, it is useful to consider the dimensionless
similarity criteria that characterize the mode of thermal gravitational
convection and impurity transport. They are Gr¼gβT[(TW – TS)/L]H4/
ν2—Grashof, Pr¼νρCP/λ—Prandtl, Ra¼GrPr—Rayleigh and Sc¼ν/D—
Schmidt numbers. For GaSb(Te) melt: Pr¼7.45�10�2 and Sc¼64.
The value of Gr was a variable parameter, a function of the micro-
gravity g/go level and the melt size H� L.

In this work, a simplified variant of the model was used, that
corresponds to the calculation of a discrete stage of crystallization
(H� L: 1.5�4, 0.6�1.5 and 3�9 [cm� cm]), and the condition
C¼C0 at X¼L (Fig. 1).

Analysis of the results for space experiment by means of the
hydrodynamic similarity criteria and known analytical models [3]
has showed an importance of such input parameter, as the velocity
V1 on the end of the boundary layer. However, the determination
of V1 and the boundary layer thickness requires a detailed analysis
of the velocity and concentration fields calculated on the basis of
full Navier–Stokes and heat–mass transfer equations. Therefore, in
the present work this task has been simplified. The maximum Vmax

of velocity magnitude Vmagn¼(VX
2þVY

2)1/2 was used for the analy-
tical models instead of V1. This simplification was interesting for
technological practice. Therefore, the comparisons with known
analytical models are present not only vs. the dimensionless
criteria (Gr and Re), but also vs. the values of Vmax.

3. Semi-analytical approach and analytical models

The calculations, using a particular simplified numerical model,
were compared with the data calculated by semi-analytical [5] and
analytical formulas [1,2].

In the semi-analytical model [5], the equation for the impurity
concentration is solved numerically for the following analytical
velocity field in the melt:

VXðX;YÞ ¼Gr 0:25�ðY�0:5Þ2
h i

ðY–0:5Þf1�e�αX ½ cos ðβXÞ
þðα=βÞ sin ðβXÞ�g

VY ðX;YÞ ¼Gr 0:25� ðY–0:5Þ2
h i

e�αXðα2=βþβÞ sin ðβXÞ=24: ð2Þ

Here, α¼4.15, and β¼2.286.

We investigated a few formulas for Keff, corresponding to the
existing analytical models.

For BPS model [1]:

Keff ¼ K0= K0þð1–K0Þe–Δ
h i

; ð3Þ

where Δ¼VSδ/D. Here the name “BPS model” indicates the
solution for the problem of convective diffusion in the “stagnant
film” approximation obtained in [1]. In this work, the convective
flow intensity is accounted via parameter δ associated with the
diffusion layer thickness. There are no restrictions on this para-
meter δ. Although in [1] the found solution was applied for
Czochralski crystal growth (there δ is defined in the model of a
rotating disk), nothing prevent the use of BPS solution for the
Bridgman method, too, while an appropriate formula for δ will be
chosen.

The estimation of δ in the Bridgman crystal growth was
proposed by means of the formula based on well-known Blasius
solution for the flow along a plate [8]:

δ¼ 5ðvH=VmaxÞ1=2ðD=vÞn; ð4Þ
where the exponent n is dependent on Sc¼ν/D with 1ZnZ1/3
for 0oSco1 [9]. For most cases nE1/2 [10]; in particular, this
value is recommended for semiconductor melts with 5oSco50
[8]. For our case Sc¼64450 and formally we should use n¼1/3.
However, these criteria are very approximate, so we have carried
out the estimations for both cases n¼1/2 and n¼1/3 of the BPS
model. The question of the applicability of the formula (4) in the
BPS model is considered for the first time.

For OM model [2], a weak convection case was assumed:

Keff ¼ ð1þηÞ=ð1þη=K0Þ; ð5Þ
where η¼(D/ν)1/2VmaxD/VS

2H and Vmax is a convective velocity
beyond the hydrodynamic boundary layer. The coefficient η corre-
sponds to the formulas (23) and (38) in [8] with VD¼V1(D/ν)1/2.

In formulas (3) and (5), the velocity Vmax is an input parameter.
Therefore, for Keff comparison using values calculated by the semi-
analytical and numerical models, Vmax was taken as the maximum
Vmagn in the melt. This value was calculated by the formula (2) and
by AnsyssFluents. The required value of Keff is calculated as
follows: Keff¼K0oC4/C0, where oC4 is an average impurity
concentration at MCI.

The impurity redistribution along MSI (including the diffusion
mass transfer) is out of a consideration of the one-dimensional
models. Therefore, it is necessary to find a way for verification of
these 1D models with the 2D modeling. For this purpose the values
of Keff were calculated for the central and both extreme points of MSI,
but a good correlation between 1D and 2D models was absent.
However the good correlation has been obtained with using the
averaged value of Keff along MSI. In this case the value of δ(y) was
calculated with y¼H corresponding to “outlet edge” of MSI. In the
following sections we present the results of such verification.

4. Microgravity influence

A thermo-gravitational convection was investigated in the
ampoule with only lateral heating for a number of gravity levels.
For microgravity values: g/g0¼1.6�10–4, 1.6�10�3 and
1.4�10�2, the maximum values of a velocity magnitude Vmax

correspond to 7.5�10–5, 8.1�10�4 and 4.4�10�3 cm/s, respec-
tively. This comparison shows that with increasing g/g0 the one-
vortex flow persists, and its structure is changing only slightly. In
Fig. 2a there are shown contours of the Vmagn in the ampoule for
g/g0¼1.6�10�3. A noticeable feature of this weak flows is
symmetry of velocity field relatively to the longitudinal (Y¼H/2)
and transverse (X¼L/2) cross-sections (Fig. 2b).

Fig. 1. Scheme of the simplified model: thermal boundary conditions, VS—velocity
of MCI, and the direction of melt flow (dashed line).
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