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a b s t r a c t

We study the effect of the linear shear flow on particle growth in the undercooled melt by using the
method of matched asymptotic expansion. The analytical result shows that the shear effect of flow
results in the significant distorted deformation of the interface. Under the combined action of both shear
flow and anisotropic surface tension, the lateral interface of the particle is further compressed but the
upper interface and lower interface further grow during the early stage after nucleation to form the
distorted ear-like shape formation. As a result, the minimum inner diameter decreases to less than two
times the critical radius for nucleation and the strength of the particle becomes weaker, and then the
particle will split or be broken into several more fine particles. The analytical result provides the
prediction of the interface evolution of the particle under the influence of the linear shear flow.

& 2014 Published by Elsevier B.V.

1. Introduction

Convection effects are of fundamental importance in controlling
pattern formation of interface microstructures. A great number of
experimental and simulation works have shown the effect of solute
convection, external forced flows on interface microstructures [1–3].
The external forced flow imposed in the undercooled melt will
strongly change the solidification dynamics and then pattern forma-
tion of interface microstructures. The upstream flow imposed on the
growing crystal enhances the growth velocity of the interface in the
upwind direction [4]. The uniform streaming flow results in higher
local growth rate near the surface where the flow is incoming [5]. Due
to the melt convection induced by stirring, the crystal directly
nucleates from the convective undercooled melt and grows up to a
large scale [6]. In the uniform streaming flow, an initially spherical
particle evolve into a peach-like shape [7]. Liu et al. [8,9] experimen-
tally and numerically investigated the convective effects driven by
accelerated crucible rotation on the segregation, interface shape, and
morphological instability during crystal growth. Jung et al. [10]
investigated the effect of an external time-dependent flow to simulate
the industrial Czochralski process for growing silicon crystals. In recent
years, these phase selection and grain refinement have been investi-
gated for the perspective of applications. By the centrifugal casting
technique, Wang et al. [11] fabricated a nano-composite with the
relatively uniform dispersed iron particles in the copper matrix, whose
mechanical properties show a significant increase. It has provided
strong motivation for the direct calculation of interface evolution and

morphology of particle growth. When a forced flow is exerted on the
melt, the fully coupled problem of the heat transfer and the fluid flow
is hard to solve accurately with numerical and analytical approaches.
However, the fluid velocity near the particle can be decomposed into
the superposition of the uniform streaming flow and the linear flow. In
the paper, we study the effect of a well-defined linear shear flow on
particle growth in the undercooled melt. By using the matched
asymptotic expansion method, we find the asymptotic solution for
temperature fields and shape of the particle in the fully coupled
problem. With the analytical solution, we analyze the interface
evolution and morphology of the particle growth.

2. The theoretical formation

We consider the evolution and growth of a particle in the
convective undercooled melt driven by a linear shear flow. In
the Cartesian coordinate system ðx1; x2; x3Þ whose origin is at the
center of the particle, the linear shear flow is expressed as

S¼ Px2iþ0jþ0k; ð2:1Þ
where i, j and k are the unit vectors of the Cartesian coordinate
frame, respectively, P is the constant velocity gradient. The tempera-
ture far from the particle is T1 (T1oTM ; TM is the solidification
equilibrium temperature for the pure substance) to form the under-
cooled melt of undercooling ΔT ¼ TM�T1. The anisotropy function
is described by a four-fold symmetry system [12]

γ ¼ γ0½1þα4ðð sin 4φþ cos 4φÞ sin 4θþ cos 4θÞ�; ð2:2Þ
where γ0 is the dimensional isotropy that gives the average magni-
tude of surface tension, α4 is the anisotropy parameter. After we
rescale the length scale as made in [13,14], the fluid velocity in the
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liquid phase U, pressure P, temperature in the liquid TL and
temperature in the solid TS satisfy the dimensionless governing
equations [13]

ε
∂U
∂t

þεðU�∇ÞU¼ �∇PþPt∇2U; ∇� U¼ 0; ; ð2:3Þ

ε
∂TL

∂t
þεðU� ∇ÞTL ¼∇2TL; ελS

∂TS

∂t
¼∇2TS; ð2:4Þ

where ε¼ΔT=ðΔH=ðcpLρLÞÞ, Pt ¼ υ=κL, λS ¼ κL=κS, ΔH is the latent
heat per unit volume, cpL is the specific heat and ρL is the density in
the melt, υ is the kinematical viscosity, κL and κS are the thermal
diffusivities in the liquid and solid phases, respectively. In the
spherical coordinates whose origin is at the center of the particle,
and the interface of the particle is expressed as R¼ Rðθ;φ; tÞ.
At the interface, the total mass conservation condition, the tangential
non-slip condition, the thermal equilibrium condition, the Gibbs–
Thomson condition and energy conservation condition hold [14].
The flow-driven condition and far-field condition are, as r-1;

U-pyi; TL-�ε; ð2:5Þ

where y is the rectangular coordinate, p is the dimensionless
constant velocity gradient, p¼ r0P=V , where V is the characteristic
velocity of the interface. Finally, the initial condition holds, in which
the initial condition for the interface is, at time t ¼ 0;

Rðθ;φ;0Þ ¼ 1; ð2:6Þ

For the sake of simplicity, it is assumed that the densities in the
liquid and solid phases are equal, and the buoyancy effects are
neglected. The separation or split of a particle into two particles or
the interaction between particles does not involve.

3. Asymptotic solution and analysis

For the case of small undercooling parameter ε; ε{1, we seek
the asymptotic solution of Eqs. (2.1)–(2.6)

U�UL0þεUL1þ⋯; P � PL0þεPL0þ⋯;

TL � εTL0þε2TL1þ⋯; TS � εTS0þε2TS1þ⋯; R� R0þεR1þ⋯

ð3:1Þ

in which each order approximation is further expanded into a
series of spherical harmonics. Substituting (3.1) into Eqs. (2.1)–
(2.6) and equating the terms of like powers of ε, we derive the
governing equations and boundary conditions and initial condi-
tions for each order approximation, and found the solution for the
temperature fields and the interface of the particle.

For the flow field, when it is superimposed additionally on the
linear shear flow, the flow field throughout the melt is modified by
the additional fluid velocity. After carrying out the differentiation
algebra, we have the leading order approximation UL0 ¼ ðu0; v0;w0Þ
and PL0 in the form of Cartesian rectangular coordinates [15],

u0 ¼ �5p
2
R3
0

r5
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0

r2

 !
x2y�p
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0
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þconst;

ð3:2Þ

for the temperature fields, the leading order approximation is
[13,14]

TL0 ¼ �1þ R0ðR0�2ΓÞ
ðR0þE�1MÞ

1
r
; TS0 ¼ �2ΓþE�1M

R0þE�1M
; ð3:3Þ

where R0 satisfies the ordinary differential equation

dR0

dt
¼ R0�2Γ
R0ðR0þE�1MÞ

ð3:4Þ

with the initial condition (2.6), Eq. (3.4) has an implicit solution
t ¼ tðR0Þ,

t ¼ 1
2
ðR2

0�1Þþð2ΓþE�1MÞ R0�1þ2Γ ln
R0�2Γ
1�2Γ

� �
ð3:5Þ

The leading order approximation influences the first order
approximation for the temperature field. By using the method of
matched asymptotic expansion, we obtain the uniformly valid
asymptotic expansion solution for the particle growth, in which
the interface shape function is expressed as

R¼ R0�
εðR0�2ΓÞ

3R0ðR0þE�1MÞ

�
Z R0

1

ω2ð3ω2þ6E�1Mω�6ΓE�1M�kλSE�1M�2kλSΓÞ
ðω�2ΓÞðωþE�1MÞ2

dω

�5εpR2
0ðR0þð2kþ3ÞE�1MÞd2
48ðR0�2ΓÞd1

�
Z R0

1

ωðω�2ΓÞd1
ðωþð2kþ3ÞE�1MÞd2 þ1

dωP2
2ð cos θÞ sin 2φ

�2α4ΓðR0�2ΓÞ
R0ðR0þE�1MÞ

Z R0

1

ωðωþE�1MÞ
ðω�2ΓÞ2

dω

þ24α4ð4kþ5ÞΓR9
0ðR0þð4kþ5ÞE�1MÞd4

ðR0�2ΓÞd3

�
Z R0

1

ðω�2ΓÞd3 �1ðωþE�1MÞ
ω9ðωþð4kþ5ÞE�1MÞd4 þ1

dωP4ð cos θÞ

þα4ð4kþ5ÞΓR9
0ðR0þð4kþ5ÞE�1MÞd4

12ðR0�2ΓÞd3

�
Z R0

1

ðω�2ΓÞd3 �1ðωþE�1MÞ
ω9ðωþð4kþ5ÞE�1MÞd4 þ1

dωP4
4ð cos θÞ cos 4φþOðε2Þ;

ð3:6Þ
where Pm

n ð cos θÞ is the associated Legendre polynomial of degree
n and order m;

Γ ¼ γ0TM

r0ΔHΔT
; E¼ΔT

TM
; M¼ V

μTM
; k¼ kS

kL
;

d1 ¼
2ð2kþ3Þð2ΓþE�1MÞ
2Γþð2kþ3ÞE�1M

; d2 ¼
ð2kþ3ÞE�1Mþð8kþ10ÞΓ

2Γþð2kþ3ÞE�1M
;

d3 ¼
9ð4kþ5Þð2ΓþE�1MÞ
2Γþð4kþ5ÞE�1M

; d4 ¼
3ð4kþ5ÞE�1Mþ6ð12kþ13ÞΓ

2Γþð4kþ5ÞE�1M
;

here, μ is the interfacial kinetics coefficient, kL and kS are respec-
tively the heat conduction coefficients in the liquid and solid
phases.

The approximate solution obtained above are performed on a
basis of the order of magnitude analysis, For our asymptotic
analysis, the error of the asymptotic solution is of the Oðε2Þ order
of magnitude according to the requirement of asymptotic expan-
sion. Therefore, the range of the asymptotic expansion solution in
(3.6) holds for the situation that are of the first order of magni-
tudes. As we see that the value of Prandtl number does not
influence the thermal fields in the leading and first order approx-
imations. When we proceed to the second order approximation of
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