ELSEVIER

Journal of Crystal Growth

journal homepage: www.elsevier.com/locate/jcrysgro

Investigation on the Li, Ba//BO₂, F ternary reciprocal system and growth of bulk β -BaB₂O₄ crystals

E.A. Simonova*, N.G. Kononova, V.S. Shevchenko, A.E. Kokh

Institute of Geology and Mineralogy, RAS Siberian Branch, 630090 Novosibirsk, Russia

ARTICLE INFO

ABSTRACT

Available online 15 February 2014

Keywords:

- A1. Phase diagrams A2. Single crystal growth
- R1 Borates
- B2. Nonlinear optic materials

Methods of spontaneous crystallization on a platinum loop, modified VPA method, solid phase synthesis, X-ray powder diffraction analysis and chemical analyses were used to study phase formation in the Li, Ba//BO₂, F ternary reciprocal system and the base of the BaO–B₂O₃–Li₂O prism of quaternary reciprocal system Ba, B, Li//O, F. In these systems the fields of primary crystallization of β -BaB₂O₄ were determined and a promising solvent for crystal growth was found. A series of experiments were carried out on the growth of bulk barium borate crystals in the system BaB₂O₄–LiF.

© 2014 Published by Elsevier B.V.

1. Introduction

Barium borate β -BaB₂O₄ (BBO) single crystals of lowtemperature modification are important materials for nonlinear optics and are used for laser frequency conversion in the visible and UV regions. Radiation of YAG:Nd laser in β -BaB₂O₄ crystals converts into the 4th and 5th harmonic (213 nm). The melting point of barium borate is 1095 °C; temperature of α - β phase transition is 925 °C. The basic procedure for growing β -BaB₂O₄ crystals is solution-melt crystallization using the top-seeded solution growth technique [1,2].

The most common solvent used for growing β -BaB₂O₄ single crystals from solution-melt is Na₂O. We have grown high-quality β -BaB₂O₄ crystals in the BaB₂O₄-NaBaBO₃ system (k=1.69 g/ kg °C, where k is the yield coefficient, i.e. weight of grown crystal at temperature decrease of 1° and initial load of growth crucible equal to 1 kg). Sodium fluoride is considered as a promising flux. The BaB₂O₄-NaF section and the BaO-B₂O₃-NaF system have a wide field of primary crystallization of β -BaB₂O₄ [3,4]. Our growth experiments showed that growth of β -BaB₂O₄ crystals with a high yield coefficient in the BaB₂O₄-NaF system is possible only in the first growth cycle (k=2.76 g/kg °C).

Absorption > 500 ppm/cm at wavelength 532 nm was measured on β -BaB₂O₄ crystals [5]. Crystals with the absorption < 100 ppm/cm are of great demand nowadays and therefore, a topical problem, which is actively being solved in the world, is the search for new solvents providing maximum yield coefficient and high optical quality of β -BaB₂O₄ crystals.

* Corresponding author. *E-mail address:* simonovakatherine1986@gmail.com (E.A. Simonova).

http://dx.doi.org/10.1016/j.jcrysgro.2014.01.073 0022-0248 © 2014 Published by Elsevier B.V. In this paper we have discussed results of systematic researches of phase equilibriums in the Li, Ba//BO₂, F ternary reciprocal system. To choose the optimal solvent in the fields under study, we had to analyze a great number of sections. Use of Li-bearing fluxes is assumed to reduce the viscosity of melt-solution. The ternary diagram BaO-B₂O₃-LiF has not been adequately studied so far. The narrow crystallization field of β -BaB₂O₄ along the BaB₂O₄-LiF section was reported in [6]. We have carried out systematic studies of phase formation and crystallization of the BaB₂O₄-LiF system. Applicability of BaB₂O₄-LiF section for growth of β -BaB₂O₄ single crystals is demonstrated.

Crystallization fields of β -BaB₂O₄ were studied considering that it belongs to the Ba, B, Li//O, F quaternary reciprocal system which can be presented as a trigonal prism based on oxide BaO–B₂O₃– Li₂O and fluoride BaF₂–BF₃–LiF concentration triangles. The BaO– B₂O₃–Li₂O phase diagram was studied in [7]. The compounds 2BaO · B₂O₃ on the BaO–B₂O₃ section, stated by the authors [7], were rejected earlier in [8]. It is also worth noting that triangulation in the system was conducted by the authors without considering the compound LiBaBO₃ discovered in [9]. Thus, the phase diagram BaO–B₂O₃–Li₂O in [7] is incorrect and requires substantial supplementation.

In this work results of studies of phase equilibriums in the Li, Ba// BO₂, F ternary reciprocal system and base of the BaO–B₂O₃–Li₂O prism of the Ba, B, Li//O, F quaternary reciprocal system and experimental results on growth of β -BaB₂O₄ crystals were reported.

2. Experiment

Phase equilibria in the Li, Ba//BO₂, F ternary reciprocal system were studied using the modified method of visual polythermal

analysis, methods of spontaneous crystallization of melt, solid phase synthesis and X-ray powder diffraction analysis. As a starting substance we used high-purity BaCO₃, Li₂CO₃, H₃BO₃, BaF₂ and LiF.

2.1. Modified method of visual polythermal analysis (VPA)

The experiments were carried out in a precision heating furnace with a high symmetry and stability of heat field. A platinum crucible 40 mm in diameter was used for preparing 20 g of solution melt by gradually increasing the temperature to complete melting. The melt was observed through a quartz glass in the upper lid of the furnace. The melt was overheated and held for homogenization. Temperature in the furnace was decreased in steps by 5–10 °C. At each stage, after holding for 3–4 h, the surface of melt was touched with a platinum rod to remove supercooling. If the temperature of solution-melt corresponded to saturation point, primary spontaneous crystals were observed. From the established saturation temperatures for different concentrations the liquidus curves of systems were built.

2.2. Method of spontaneous crystallization on a platinum loop

Solution melt of 40 g was prepared in a platinum crucible 40 mm in diameter. Temperature was decreased in steps up to the appearance of first crystals and a platinum rod with a loop was placed in the central part of the melt surface. The temperature was decreased at a rate of 2 deg/day during a few days to produce spontaneous crystals suitable for identification of phases. To grow spontaneous crystals, the decrease in temperature was reduced to 0.2–0.5 deg/day. The time length was 15–20 days.

2.3. Solid phase synthesis

To determine the beginning of reaction, a mixture of initial components weighing 5 g was put into a platinum crucible and was annealed at predetermined temperature for a few days. During heat treatment, several intermediate grindings were carried out. The presence of additional phases in annealed samples along with initial components was controlled by the XRD (X-ray powder diffraction analysis) method. If the beginning of solid phase reaction did not take place, the temperature was increased. The XRD was performed on the DRON-3 diffractometer (CuK α -radiation).

3. Results and discussion

The arrangement of sections BaB_2O_4 -LiF, BaB_2O_4 -LiBaF₃ and BaB_2O_4 -LiBaBO₃ in the quaternary reciprocal system Ba, B, Li//O, F is shown in Fig. 1.

Table 1 and Fig. 2 show results of study of the BaB₂O₄–LiF system by the method solid-phase synthesis. The criterion for the completion of the solid-state reactions was the constant ratio of peak intensities. The optimal experimentally established annealing time of samples was 3 days at 620 °C. It is worth noting that LiBa₂B₅O₁₀ is present in all X-ray diffraction patterns.

While studying the section BaB_2O_4 -LiF by the method of solidphase synthesis in the range from 5 to 85 mol% BaB_2O_4 , it was shown that in the region of concentrations more than 83.3 mol% BaB_2O_4 a solid phase contains BaB_2O_4 , $LiBa_2B_5O_{10}$ and BaF_2 . At molar ratios 83.3 mol% BaB_2O_4 to 16.7 mol% LiF, BaB_2O_4 and LiF react completely to form $LiBa_2B_5O_{10}$ and BaF_2 . In the region of concentrations from 83.3 mol% BaB_2O_4 to 76.9 mol% BaB_2O_4 a solid phase contains $LiBa_2B_5O_{10}$, $LiBaF_3$ and BaF_2 . At molar ratios 76.9 mol% BaB_2O_4 to 23.1 mol% LiF, BaB_2O_4 and LiF react completely to form $LiBa_2B_5O_{10}$ and $LiBaF_3$. In the region of concentrations less than 76.9 mol% BaB_2O_4 the solid phase includes $LiBa_2B_5O_{10}$, $LiBaF_3$ and LiF. The presence of additional compounds on the X-ray diffraction patterns implies that the BaB_2O_4 -LiF section is not quasibinary.

Using the modified VPA method, we studied the concentration range from 80 to 10 mol% BaB_2O_4 . After determining the saturation temperature of initial melt, we changed the composition by adding the calculated amount of lithium fluoride. Concentration range 67.5–60 mol% BaB_2O_4 and 60-40 mol% BaB_2O_4 corresponds to the primary crystallization region of β -BaB₂O₄ and LiBa₂B₅O₁₀, respectively.

Fig. 3 shows the results of the study of the BaB₂O₄–LiF section by the modified VPA method and, for some compositions, with further crystallization on a platinum loop and X-ray powder diffraction analysis.

A spontaneous crystal of β -BaB₂O₄ of hexagonal shape with developed prism faces weighing 20 g was grown in the system BaB₂O₄-LiF from 80 g melt by the top-seeded solution growth technique. The temperature range of crystallization was 20° at a decreasing rate of 1 deg/day. In spite of the narrow crystallization range, LiF is a promising solvent for the growth of bulk BBO crystals owing to the high yield coefficient (k=12.5 g/kg °C) and melt stability.

Fig. 1. Quaternary reciprocal system Ba, B, Li//O, F and the position of the ternary reciprocal system Li, Ba//BO₂, F (a); the ternary reciprocal system Li, Ba//BO₂, F (b).

Download English Version:

https://daneshyari.com/en/article/1790329

Download Persian Version:

https://daneshyari.com/article/1790329

Daneshyari.com