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a b s t r a c t

In this work, we present a theoretical analysis of the diffusion-induced growth of “vapor–liquid–solid”
nanowires, based on the stationary equations with generalized boundary conditions. We discuss why and
how the earlier results are modified when the adatom chemical potential is discontinuous at the nanowire
base. Several simplified models for the adatom diffusion flux are discussed, yielding the 1=Rp radius
dependence of the length, with p ranging from 0.5 to 2. The self-consistent approach is used to couple the
diffusion transport with the kinetics of 2D nucleation under the droplet. This leads to a new growth
equation that contains only two dimensional parameters and the power exponents p and q, where q¼1 or
2 depends on the nucleus position. We show that this equation describes the size-dependent depression of
the growth rate of narrow nanowires much better than the Gibbs–Thomson correction in several important
cases. Overall, our equation fits very well the experimental data on the length–radius correlations of III–V
and group IV nanowires obtained by different epitaxy techniques.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The so-called “vapor–liquid–solid” (VLS) growth mechanism,
proposed by Wagner and Ellis in 1964 [1], is now widely used for
bottom-up fabrication of semiconductor nanowires with well-
controlled properties for different applications [2–5]. In the early
days of “nanowhisker” technology, the VLS growth was usually
performed from chemical precursors that required high surface
temperatures for their decomposition [1,6]. In this case, a liquid
droplet at the wire top acts as a chemical catalyst which facilitates
chemical reactions at the vapor–liquid surface, while the pyrolysis
at the solid surfaces is almost completely suppressed. Conse-
quently, the diffusion-induced contributions to the wire growth
rate are negligible. Without surface diffusion and the Gibbs–
Thomson enhancement of desorption from small droplets [6,7],
the sole rate-limiting step for nanowire growth is the thermally
activated metal-catalyzed dissociative adsorption directly on the
catalyst droplet and the vertical growth rate is radius-independent
[8]. When the Gibbs–Thomson effect is included, the nanowire
elongation rate becomes zero for a certain minimum droplet size
below which the entire VLS growth ceases [6,7,9], as in the
Givargizov–Chernov model [10].

In modern metal organic chemical vapor deposition (MOCVD),
however, pyrolysis takes place also at the solid surfaces (the
substrate surface and the nanowire sidewall facets) producing
surface adatoms which can subsequently diffuse to the nanowire
top and contribute to its elongation [11]. In molecular beam
epitaxy (MBE) and related techniques [12–14], the VLS nanowire
growth cannot be understood without surface diffusion. Rather
than a chemical catalyst, the droplet acts as a material collector
whose low chemical potential directs the adatom diffusion fluxes
to the top. This explains why nanowires are higher than the
surface layer which always grows between them. Due to para-
mount importance of the diffusion-induced nanowire growth,
several models have been proposed [11–17] based on the earlier
works [6,18–20]. These models are capable of describing several
major effects. In particular, a purely diffusion growth yields the
diffusionlike decreasing radius dependence of the growth rate in
the form 1=Rp, where the exponent p depends on the growth
conditions. More advanced models account for surface diffusion
and the Gibbs–Thomson effect simultaneously, leading to the
experimentally observed non-monotonous length–radius correla-
tion with a maximum [21–23]. Size-dependent diffusion-induced
VLS growth of III–V and group IV nanowires continues to attract
much interest in connection with non-linear effects in nanowire
growth and crystal structure [23], growth kinetics and nucleation
statistics in individual nanowire [24], narrowing the length
distribution of nanowires [25], and the radius dependence of the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jcrysgro

Journal of Crystal Growth

0022-0248/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jcrysgro.2014.01.015

n Corresponding author.
E-mail address: dubrovskii@mail.ioffe.ru (V.G. Dubrovskii).

Journal of Crystal Growth 401 (2014) 431–440

www.sciencedirect.com/science/journal/00220248
www.elsevier.com/locate/jcrysgro
http://dx.doi.org/10.1016/j.jcrysgro.2014.01.015
http://dx.doi.org/10.1016/j.jcrysgro.2014.01.015
http://dx.doi.org/10.1016/j.jcrysgro.2014.01.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.01.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.01.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2014.01.015&domain=pdf
mailto:dubrovskii@mail.ioffe.ru
http://dx.doi.org/10.1016/j.jcrysgro.2014.01.015


growth rate under different conditions [26]. Furthermore, diffu-
sion growth models originally developed for VLS semiconductor
nanowires are now widely used in studies of other highly
anisotropic objects such as self-induced GaN nanowires [27] and
carbon nanostructures [28,29].

Functional form as well as kinetic coefficients of the diffusion-
induced nanowire growth rate largely depends on the boundary
conditions. To find the diffusion flux to the top, one needs to solve
two second order equations for the adatom concentrations on the
substrate surface and the nanowire sidewalls, which requires four
boundary conditions [19,22,23,30]. In this work, we present a new
analytical solution for the diffusion-induced nanowire growth rate
with the generalized boundary conditions that describe correctly
the potential relief at the nanowire–substrate and the nanowire–
droplet boundaries. Our solution contains the previous results
[15–27] as particular cases. We then develop a self-consistent
approach where the diffusion transport is equalized to the
nucleation-mediated sink at the liquid–solid interface. Finally, a
simplified growth equation is derived, which contains only two
fitting parameters and allows one to explain very well most
experimental data on the radius-dependent nanowire growth
rates in different VLS techniques [14,15,21,22,31–35].

2. Generalized boundary conditions

The diffusion-induced growth rate at a time-independent
nanowire radius R should generally be obtained from the equation

dL
dt

� �
dif f

¼ �2ΩS

R
Df

dnf

dz

����
z ¼ L

ð1Þ

Here, the right hand side gives the appropriately normalized
diffusion flux of adatoms through the circular triple phase line at
the nanowire top (at vertical coordinate z¼ L), with L as the
nanowire length, ΩS as the elementary volume in the solid, Df as
the diffusion coefficient and nf as the z-dependent adatom con-
centration on the sidewall facets, labeled “f ”. We consider the
diffusion flux of only one element, which is the case for group IV
nanowires and is also a good approximation for III–V nanowires such
as GaAs, because arsenic does not diffuse along the sidewalls [36].
We also assume that the growth rate of GaAs nanowires is Ga-
limited, i.e., each Ga adatom diffusing to the top subsequently finds
its As pair and incorporates to the solid. This requires an excessive As
influx, the property which usually holds for the Au-catalyzed VLS
growth [4] but not for the Ga-catalyzed case [36].

In order to calculate the diffusion flux, we should consider two
steady state diffusion equations for the substrate (ns) and sidewall
(nf ) adatoms [22,23]:

DsΔnsþ I cos α�ns

τs
¼ 0; ð2Þ

Df
d2nf

dz2
þωI sin α�nf

τf
¼ 0: ð3Þ

The first terms here describe the diffusion, the second stand for the
adsorption from the flux I directed at an angle α to the substrate
normal, and the third give the adatom sinks. The Δ is the two-
dimensional Laplace operator in the substrate plane (r), Ds is the
adatom diffusion coefficient on the substrate surface, and τs, τf are the
effective lifetimes on the substrate and sidewall surfaces, respectively.
These lifetimes are limited by either desorption from the correspond-
ing planes or incorporation to surface steps. The coefficientω in Eq. (3)
equals 1 in MOCVD and 1=π in MBE. The angle α does not enter
the diffusion equations in the case of vapor deposition. Instead,
the temperature-dependent pyrolysis efficiencies χ f and χs can be

introduced into the adsorption terms to account for different precursor
decomposition probabilities at different surfaces [23].

General solutions to Eqs. (2) and (3) are given by

nsðrÞ ¼ Iτs cos αþc1I0 r=λs
� �þc2K0ðr=λsÞ; ð4Þ

nf ðzÞ ¼ωIτf sin αþa1 coshðz=λf Þþa2 sinhðz=λf Þ: ð5Þ

Here, λs ¼
ffiffiffiffiffiffiffiffiffiffi
Dsτs

p
is the effective diffusion length of adatoms on

the substrate surface and λf ¼
ffiffiffiffiffiffiffiffiffiffi
Df τf

p
is that on the sidewalls. The

functions ImðξÞ and KmðξÞ here and below denote the modified
Bessel functions of the order m in standard notations, the I
increasing and K decreasing at ξ-1. The physics of the growth
process is now determined by the four boundary conditions that
are required for finding the four coefficients c1, c2, a1 and a2.

For a single nanowire, the first boundary condition for the
substrate adatoms writes down as nsðr-1Þ¼ Iτs cos α, meaning
simply that the adatom concentration is constant far away from
the nanowire. This yields c1 ¼ 0 to eliminate the increasing Bessel
function I0. For an array of nanowires with the average spacing
2RW � 1=

ffiffiffiffiffiffiffiffi
NW

p
, where NW is the surface density of the wires, this

condition is changed to [30]

dns

dr

����
r ¼ RW

¼ 0; ð6Þ

implying zero diffusion flux at equal distance between the wires.
Dubrovskii et al. [22,23,30] proposed using the conditions of
continuity of adatom chemical potential and flux at the nanowire
base (r¼ R), given by

ssnsðRÞ ¼sf nf ð0Þ; ð7Þ

Ds
dns

dr

����
r ¼ R

¼ �Df
dnf

dz

����
z ¼ 0

: ð8Þ

The second boundary condition given by Eq. (7) follows from the
expression μ¼ kBT lnðsnÞþconst for the chemical potential of
both adatom subsystems “s” and “f” in an ideal adsorbate, with
ss and sf being the elementary areas on the substrate and sidewall
surfaces, respectively. The third condition is simply the continuity
equation at the nanowire foot.

Johansson et al. [16] put zero boundary condition at the
nanowire top: nf ðLÞ ¼ 0, which was also used by us [14,15,30]
and some other authors (see, e.g., the recent paper by Lu et al.
[26]) as the fourth boundary condition. With this condition, the
diffusion flux is always directed to the top where the adatom
concentration is zero. Dubrovskii et al. [22,23,25] then changed the
condition at the wire top to the continuity of chemical potentials
at the triple phase line

kBT ln sf nf ðLÞ
� 	¼ μ1

l þ2γLVΩL sin β
R

; ð9Þ

where μ1
l is the chemical potential of an infinitely large liquid

phase. This regards for the Gibbs–Thomson effect of elevation of
chemical potential due to the curvature of the droplet surface.
It has been shown that such a condition has rich implications for
describing non-linear growth effects such as negative growth [23]
and narrowing the length distribution of nanowires [25]. Eq. (9)
can be re-arranged in the equivalent form

nf ðLÞ ¼
θl

sf
¼ θ1

l

sf
exp

RGT

R

� �
� ~nf ð10Þ

by using the liquid activity θl ¼ expðμ1
l =kBTþRGT=RÞ, with T as the

surface temperature, kB as the Boltzmann constant,
RGT ¼ ð2ΩLγLV sin βÞ=ðkBTÞ as the characteristic Gibbs–Thomson
radius,ΩL as the elementary volume in the liquid phase, γLV as the
droplet surface energy and β as the contact angle of the droplet at
the nanowire top. Now, ~nf has a sense of quasi-equilibrium
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