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a b s t r a c t

The accurate calculation of lattice energy and structure of molecular crystals represent a test of the ability of
first-principles periodic density functional method to model the relatively weak intermolecular interactions
found in molecular crystals. The weak intermolecular dispersion interactions need to be considered for the
accurate prediction of crystal structure and lattice energy of molecular crystals. In this paper, we report the
calculation of lattice energies and structure of a set of eight molecular crystals at the ab initio level of theory.
Hartree–Fock and density functional theory with and without dispersion correction potential were
employed. Our results clearly show with application of triple zeta polarization (TZP) basis set, the lattice
parameters obtained using B3LYP functional with dispersion interactions give better agreement with the
experimental results. On the other hand, the lattice energies obtained using B3LYP-D/TZP method is severely
underestimated. The lattice energies calculated at B3LYP-D/6-31G(d,p) level of theory are in close agreement
with the corresponding experimental results because of smaller size of basis sets provide large basis set
superposition errors which compensate the missing dispersion energies.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The structure and binding energy of molecular crystals play a
central role in controlling the process parameters in the pharma-
ceutical and fine chemical industry. Their structures and particu-
late properties greatly affect the handing and processing of
materials [1]. The accurate calculation of structure of molecular
crystals presents a formidable challenge of contemporary interest.
The forces between all the molecules during crystallization process
determine the resulting crystal structure, but a priori crystal
structure prediction remains a difficult task [2]. Crystal lattice
energies are important in considering the stability of new materi-
als [3]. The lattice energy reflects the natural tendency towards the
organization of matter. Accurate determination of the lattice
energies of molecular crystals has paramount importance in
crystal engineering, which is crucial in many applications such
as the development of pharmaceutical products and optical
materials [4]. Periodic ab initio method is the most obvious
technique to use, but it requires corrections for the dispersion
interactions. Alternatively, second-order Møller–Plesset perturba-
tion theory (MP2) captures the dispersive interactions naturally,
and its local periodic implementation has become practical in
recent years [5]. However, periodic MP2 calculations remains

limited to unit cells with around 50 atoms in a medium-sized
basis sets, and post-MP2 correlation effects can be important.

The empirical force-fields method is generally employed to
calculate lattice energy of molecular crystals. Nevertheless, being an
empirical method, force fields method has inherent limitations for
providing reliable energy calculations, particularly for those struc-
tures that vary greatly from those used to develop the force field.
However, modern force fields are not completely empirical methods
and yield results that are comparable with the results obtained with
quantum mechanical method. The molecular crystals have relatively
smaller lattice energy which further poses a significant challenge to
force fields method to predict different polymorphs. On the other
hand, the quantum mechanical methods may be capable of produ-
cing precise energy calculations for the molecular crystals. However,
difficulty arises in considering the long-range van der Waals (vdW)
interaction [6, 7]. Hartree–Fock (HF) theory completely lacking such
interactions. In contrast to this, the formulation of density functional
theory (DFT) gives the exact description of ground state energy
including vdW energy [8]. The practical implementation of DFT to
account vdW energy relies on the approximation of exchange-
correlation functional. Recently, it has been shown that hybrid
exchange-correlation functional is quite successful in predicting
structure and lattice energy of molecular crystals [9,10].

In this paper, we focus our attention on the calculations of
lattice energy and structure of many molecular crystals namely,
α-resorcinol, β-succinic acid, hexamine, α-RDX and several amino
acid including (R, S)-alanine and α, β, γ polymorph of glycine
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crystals, within the framework of periodic Hartree–Fock and
density functional theory using hybrid exchange-correlation func-
tional. For this purpose, dispersion corrected and un-corrected
interactions are employed to study the role of dispersion forces on
the structures and lattice energies. Results are reported for the
optimized lattice parameters and lattice energy of a set of eight
organic crystals. A systematic comparison with experimental data
has been carried out in order to access the accuracy of with and
without dispersion corrected DFT and HF methods in determining
structure and lattice energy.

2. Computational method

All the calculations of crystal structure and lattice energy of all
molecular crystals considered in this study have been performed
using CRYSTAL09 code [11], which is an ab initio program based on
linear combination of atomic orbitals for the treatment of periodic
systems. Crystalline orbitals are represented as linear combina-
tions of Bloch functions and are evaluated over a regular three-
dimensional mesh in reciprocal space. Each Bloch function is built
from atom-centred atomic orbitals, which are contractions (linear
combinations with constant coefficient) of Gaussian-type func-
tions (GTF), each GTF being the product of a Gaussian times a real
solid spherical harmonic. HF and DFT based ab initio approaches
have been performed with B3LYP exchange-correlation functional
(hereafter refereed as DFT-B3LYP). In order to take the effect
of dispersive interactions DFT based calculations with B3LYP
exchange-correlation functional augmented with empirical dis-
persion terms (B3LYP-D) as proposed by Grimme has been
employed [12]. It has been widely demonstrated that the Hybrid
functionals and, in particular, the B3LYP functional, give precise
results for structure, energetic and vibrational properties of
molecules and solids [9,10,13,14]. The results obtained using
B3LYP functional are better than the one obtained with
exchange-correlation functional within the local density approx-
imation and generalized gradient approximation. We have tested
three all-electron Gaussian basis sets, namely 6-21G and 6-31G(d,
p) which are standard Pople's split-valance basis sets, and triple-
zeta plus polarization (TZP) devised by Ahlrichs and co-workers to
study the effect of basis set and dispersion forces on the lattice
energy and structural parameters of the molecular crystals [15,16].
Civalleri et al. [10] showed that TZP basis set is quite effective to
reduce basis set superposition error in calculations on molecular
crystals. The shrinking factor of the reciprocal space net for each
molecular crystal was used to define a mesh of points in the
irreducible Brillouin zone in order to meet the convergence
criteria [17].

In order to calculate Coulomb contributions to the total energy
and Fock matrix, truncation criteria for the evaluation of infinite
Coulomb and exchange series must be specified. It is based on the
overlap between two atomic functions which depend on the
geometry of a crystal. Apart from this, bipolar expansion is used
to expand Coulomb and exchange integrals in order to efficiently
evaluate the integrals. The total energy change due to the bipolar
expansion approximation is not greater than 10�4 hartree per
atom. The level of accuracy in evaluating the Coulomb and
exchange series are controlled by five thresholds, for which values
of 10�8, 10�8, 10�8, 10�8, and 10�16 are used [11]. The selection of
the tolerance values is performed according to overlap-like cri-
teria: when the overlap between two atomic orbitals is smaller
than thresholds, the corresponding integral is disregarded or
evaluated in a less precise way. Details of criteria for choosing
the five tolerances are discussed elsewhere [11].

The exchange-correlation contribution is evaluated by numerical
integration over the cell volume. The self-consistent-field-cycle

(SCF) converges when the root mean square (RMS) of the change
in the eigenvalues from two subsequent cycles is less than
10�8 hartree or the change in the absolute value of the total energy
is less than 10�7 hartree.

In order to obtain the fully relaxed structure of bulk crystals, we
choose experimental crystal structures as starting geometry, a full
relaxation of both lattice parameters and atomic coordinates by
means of analytical energy gradients is carried out [18]. The
geometry optimization of crystal structures are performed by
means of a quasi-Newton optimization algorithm. Gradients were
evaluated each time the energy is computed and the second
derivative matrix is updated by means of the Broyden–Fletcher–
Goldfarb–Shanno algorithm. At each step, a one-dimensional
minimization using a quadratic polynomial is carried out, followed
by an n-dimensional search using the Hessian matrix. Geometry
convergence is tested on the RMS and the absolute value of the
largest component of the gradients and estimated displacements.
The threshold for the maximum force, the RMS force, the max-
imum atomic displacement, and the RMS atomic displacement on
all atoms have been set to 0.00045, 0.00030, 0.00180, and
0.00120 au, respectively. The symmetry of slices is maintained
during the all surface relaxation calculations. In order to check
whether the optimized structure has reached equilibrium geome-
try or not, a stationary point on the potential energy surface is
found where the total force acting on atoms is numerically zero.
Geometry optimization is usually completed when the gradients
are below a given threshold. In CRYSTAL09 code, the optimization
convergence is checked on the RMS and the absolute value of the
largest component of both the gradients and the estimated
displacements. The structural optimization is successfully com-
pleted when all the four conditions set by the above thresholds are
simultaneously satisfied. The symmetry of the crystals was main-
tained during the optimization process.

An empirical correction term to include long-range dispersion
interactions in DFT methods as proposed by Grimme has been
implemented in CRYSTAL09 code [12]. It is a damped pairwise
London-type term given by,

Edisp ¼ �s6∑
ij
∑
g

Cij
6

R6
ij;g

1
1þe�dðRij;g=Rvwd �1Þ

� �
ð1Þ

which has been added to the computed ab initio DFT total energy
and gradients at the B3LYP level of theory. The summation in the
above equation is over all atom pairs and g lattice vectors with the
exclusion of self-interaction (i¼ j) for g¼0. Cij

6 is the dispersion
coefficient and Rij is the interatomic distances between atom i in
the reference cell and j in the neighboring cell. Rvdw is the sum of
the van der Waals radii and d is the steepness of the damping
function. The values of C6, Rvdw and d were taken from Ref. [12].
The scaling factor, s6, depends on the adopted exchange-
correlation functional (s6¼1.05 for B3LYP method in Ref. [12]).
A cut-off distance of 25.0 Å was used to truncate the summation
over lattice vectors to obtain accuracy of order 0.02 kJ mol�1 to
calculate lattice energy. We have carried out total energy calcula-
tions and geometry optimizations with and without including the
empirical dispersion correction in order to estimate the effect of
dispersion forces on structure and lattice energy. It has been
shown that the inclusion of dispersion forces is crucial to properly
model the weak intermolecular interactions that play an impor-
tant role in determining weakly bonded molecular structure.

Particular attention has been paid to correct the basis sets
superposition error (BSSE) to the lattice energy of all molecular
crystals considered in this study. This is necessary since in the
present calculations Gaussian-type of finite basis sets are used.
BSSE is a consequence of using incomplete basis sets, and stems
from the fact that fragment A of a system can use basis functions
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