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a b s t r a c t

The combined effect of crucible rotation and applied magnetic field on hydrothermal wave was
investigated through a three-dimensional simulation. The computational domain was a shallow annular
pool filled with a silicon melt, subjected to a crucible rotation and a vertical static magnetic field. The
thermocapillary flow along the free surface was considered. Governing equations of the system were
solved numerically by the finite volume method. The efficiency of controlling hydrothermal wave with
crucible rotation and magnetic field was assessed. Results showed that although the hydrothermal wave
was completely suppressed under the effect of magnetic field alone, the optimum combination of the
body forces induced by the applied crucible rotation and magnetic field provides a better control of the
hydrothermal wave.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hydrothermal wave (HTW) is the propagation phenomenon of
temperature and velocity fluctuations observed along the free
surface of a liquid. HTW develops due to the thermocapillary
convective flow induced by the surface tension gradient in the
liquid along the free surface. The strength of this thermocapillary
flow is described by the dimensionless Marangoni number. This
flow in the liquid is two-dimensional and stable at low Marangoni
number values, however, the flow becomes three-dimensional and
unstable as the Marangoni number increases.

The critical condition at which a HTW develops was theoreti-
cally investigated by Smith and Davis [1,2]. The development of a
HTW is clearly seen in a shallow liquid pool during the final stage
of Czochralski crystal growth [3]. The HTW analysis is free from
the influence of the effect of natural convection. Thus, this makes
the HTW analysis very useful in investigating the relative con-
tribution of Marangoni convection. From these points of view, the
dynamics and instability of HTW in a shallow annular pool were
investigated numerically in Refs. [4–9]. In these studies, the control
of HTW was not fully examined, and only the effect of pool
(crucible) rotation was taken into account [5]. In the present
study, we have examined numerically the combined effect of
applied magnetic field and crucible rotation, and introduced an
effective method to control HTW.

2. Numerical method

A schematic view of the computational domain is shown in
Fig. 1. The silicon melt is contained in a shallow annular pool of
depth d¼3 mm, inner radius ri¼15 mm and outer radius
ro¼50 mm. The upper boundary is a free surface and other
boundaries are solid wall. The pool rotates with an angular
velocity ω around the z-axis, and an applied magnetic field in
the same direction. It was assumed that the silicon melt is an
incompressible, Newtonian fluid, and the Boussinesq approxima-
tion holds. Under these assumptions, the governing equations of
the liquid phase (silicon melt) take the following forms:

Continuity:

∇ � v¼ 0 ð1Þ
Momentum:

∂v
∂t

þ ðv �∇Þv¼ −
1
ρ
∇pþ ν∇2v þ βgðT−TCÞez þ FM ð2Þ

Energy:

∂T
∂t

þ ðv � ∇ÞT ¼ α∇2T ð3Þ

Magnetic field:

∂B
∂t

−∇� ðv � BÞ ¼ 1
μ0s

∇2B ð4Þ

where v is the flow velocity vector, t time, ρ the melt density, p
pressure, β the thermal expansion coefficient, g the gravitational
constant, T temperature, TC temperature of the inner wall, ez the
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unit vector along the z-axis, FM the Lorentz force induced by the
magnetic applied field, α the melt thermal diffusivity, B magnetic
flux, μ0 magnetic permeability, and s electric conductivity.

Eq. (4) is the magnetic field equation derived from the well-
known Maxwell's equations [10]. The Lorentz force in Eq. (2) is
calculated by

FM ¼ J� B¼ 1
μ0

ð∇� BÞ � B ð5Þ

where J is the induced electric current.
The governing equations of the system (Eqs. (1)–(4)) were

discretized by the finite volume method, and were solved by the
PISO algorithm. Computations were carried out by using the
OpenFOAM code. We assume no slip boundary conditions for the
flow velocity field on the solid boundary, which determines the
circumferential flow velocity on the boundary from the angular
velocity of the pool rotation. Along the free surface, the induced
flow velocity (by the Marangoni convection) was related to
temperature gradient as follows:

μ
∂v
∂n

¼ γT∇T ð6Þ

where n is the unit normal to the free surface. The computational
grid shown in Fig. 2 was made in a cylindrical coordinate system
and the grid points were clustered near the solid wall and the free
surface. The grid numbers in the radial – (r), circumferential – (θ),
and vertical – (z) directions are 81, 180 and 21, respectively. The
maximum values of the dimensionless wall distance yþ (normal-
ized coordinate with respect to kinematic viscosity and friction
velocity) on the inner, outer and bottom walls were 3.64, 1.16 and
1.06, respectively. These grid resolutions near the wall were
sufficient to capture the boundary layer, therefore, a turbulence
model was not adopted.

Physical properties of the silicon melt are listed in Table 1. The
Prandtl number of the silicon melt is 1:09� 10−2. Other numerical
parameters and the dimensionless numbers involved (the Mar-
angoni number Ma¼ −γTΔTðro−riÞ=μα, the Grashof number
Gr ¼ gβΔTd3=ν3, the rotation Reynolds number Reω ¼ r2oω=ν and
the Hartmann number Ha¼ B0ðro−riÞðs=νÞ1=2) are presented in
Table 2. The relative strength of natural convection with respect
to the Marangoni convection, which is estimated with the ratio of
Grashof and Marangoni numbers Gr1=2=Ma2=3 [11] is small:
2:70� 10−4. Thus, the contribution of the gravitational term

βgðT−TCÞez in Eq. (2) was neglected in the present numerical
simulation. This condition of neglecting the gravitational effect is
valid for very shallow pools.

3. Results and discussion

3.1. Validation of the simulation code

Before the actual simulations, we have first validated the
simulation code in the absence of external body forces (induced
by the applied crucible rotation and magnetic field). The simula-
tion results of the validation are presented in Figs. 3–5.

Fig. 1. Schematics of the computational domain.

Fig. 2. Computational grid of the HTW simulation.

Table 1
Physical properties of silicon melt [4,12].

Property Symbol Value

Thermal conductivity (Wm−1 K−1) λ 64
Viscosity (kg m−1 s−1) μ 7.0�10−4

Density (kg m−3) ρ 2530
Gravitational acceleration (m s−2) g 9.81
Thermal expansion coefficient (K−1) β 1.5 � 10−4

Surface tension coefficient (Nm−1 K−1) γT −7.0�10−5

Heat capacity (J kg−1 K−1) Cp 1000
Melting temperature (K) Tm 1683
Electric conductivity (Sm−1) s 1.2�106

Magnetic permeability (Hm−1) μ0 1.26�10−6

Table 2
Numerical parameters of the HTW simulation.

Parameter Symbol Value

Innner wall temperature (K) Tc 1683
Temperature diffrence (K) ΔT 21
Marangoni number (–) Ma 2.91�103

Grashof number (–) Gr 3.01�10−3

Rotation speed (min−1) ω 0, 1, 2, 5
Rotating Reynolds number (–) Reω 0, 946, 1892, 4731
Magnetic flux density (mT) B0 0, 26.3, 39.5, 52.6
Hartmann number (–) Ha 0, 38, 57, 72

Fig. 3. Surface temperature fluctuation without external force at t¼150 s.
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