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a b s t r a c t

Adaptive phase field modeling is conducted to study the facet formation during directional solidifica-

tion of silicon film. The necessary condition for morphological instability is examined first based on the

classic theory for the reported experiments. With a proper thermal gradient, the simulated onset

velocity is found consistent with the experimental observations and the classic theory. The effects of

anisotropy of kinetic coefficients and interfacial energy are also considered, and the simulated

morphologies are significantly affected. The range of the kinetic cusp function affects the facet tips,

while the anisotropy of interfacial free energy changes the wavelength of facets. Nevertheless, the

simulation of kinetic undercooling on the facets is not successful, and the computational difficulty is

discussed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The directional solidification of silicon has attracted a great
attention in recent years due to its booming applications in
photovoltaics. During solidification, the interface morphology
plays a crucial role in defect formation and grain selection [1,2].
For silicon, the {111} planes tend to form facets during solidifica-
tion, and the formation of facets and subgrain boundaries has
particularly been focused [2]. Tokairin et al. [2,3] in situ observed
the zigzag faceted morphology in a directional solidification
system, and they found that the growth velocity and the wave-
length of facets were influenced by the negative temperature
gradient in the melt. They also observed that the stable spacing
between the two facets increased with the growth velocity.
Morphological transition from planar to zigzag facets and the
critical growth velocities of (110), (112) and (100) planes in
silicon were investigated by Fujiwara et al. [4] using a thin-film
solidification system. Geis et al. [5] showed the faceted front with
{111} planes in the zone-melting recrystallization of silicon. The
density of subgrain boundaries, referred to as low-angle bound-
aries, could be controlled by the position of patterned optical
absorbers. Pfeiffer et al. [6] reported the typical subgrain bound-
ary networks and studied the mechanism of facet merging.
They also derived a simple growth rate model to illustrate the
dynamics of facet growth. Due to the more nucleation sites, the
long facets enlarged and the short ones disappeared.

The phase field model (PFM) has become a powerful tool to
describe the interface evolution during solidification in recent
years [7]. However, for the simulation of silicon crystal growth,
the anisotropy of the interfacial free energy and kinetics needs to
be carefully considered. For the high anisotropy of the interfacial
free energy, Eggleston et al. [8] derived a modified method for
resolving missing orientations in the four-fold symmetry. Kasa-
jima et al. [9] used this method to investigate the growth of a
faceted silicon dendrite in an undercooled melt. Chen et al. [10]
further used this function in their phase field model to study the
grain competition of silicon; the facets in the /100S growth
direction were simulated. Lin et al. [11] extended this method to
three dimensions and discussed the effect of undercooling and the
strength of anisotropy on the growth morphology of a dendrite.

On the other hand, the anisotropic kinetic effect in silicon
could be more complicated. The big difference in the kinetic
coefficient between the rough surface, e.g., (100), and the faceted
surface (111) makes the simulation difficult, particularly as the
high undercooling builds up on the facets. For the rough surface
(100), the kinetic coefficient is about 0.12 m/(s K) [12]. However,
for two-dimensional nucleation (2DN) growth on (111), the
kinetic coefficient is three-order of magnitude smaller [13].
Furthermore, the kinetics is not linear as well. For the faceted
growth, Uehara and Sekerka [14] assumed two functions, having
sharp minima for special directions, to describe the anisotropic
kinetic coefficient, and the result was in good agreement with the
kinetic Wulff shapes. Weinstein and Brandon [15] also considered
the 2DN mechanisms and introduced a cusp function to depict the
kinetic coefficient. Miller et al. [16] further used a similar kinetic
function to simulate the growth of Ge1�xSix crystals. The behavior
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of faceted growth was simulated and compared with experimental
observations. However, the anisotropy of the interface energy was
assumed to be small (0.03) in their simulation.

In this paper, we attempt to consider both anisotropies in the
phase field model to simulate the faceted growth of silicon film
observed in the reported experiments [3]. In addition to the
necessary condition for the morphological instability, the effects
of the anisotropies on the faceted morphology and the wave-
length are discussed. The shortcomings of the present simulation
are also addressed.

2. Growth conditions for morphological instability

For pure materials, the temperature gradient and the growth
velocity are the two key parameters for morphological instability.
However, as shown by Mullins and Sekerka [17,18], the negative
mean thermal gradient Gn is the necessary condition for instability,
where Gn is defined as

Gn
¼

ksGsþklGl

ksþkl
, ð1Þ

where ks, Gs, kl, and Gl are the thermal conductivity and gradient
of the solid and the liquid, respectively. From the stability criterion
derived by Sekerka [19] and Chen et al. [20], we could estimate the
critical wavelength (l) as a function of the mean thermal gradient
(Gn) and the anisotropic strength of the interfacial energy (e4) as
follows:

l¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmd0ð1�15e4Þ

�Gn

s
, ð2Þ

where Tm and d0 are the melting temperature and the capillary
length, respectively, and e4 is the strength of anisotropy for the
interfacial free energy.

In the directional solidification experiments for silicon film,
Tokairin et al. [3] also derived a one-dimensional temperature
profile as a function of the growth velocity (V) and the tempera-
ture gradient in the furnace (G); the model was assumed pseudo-
steady state and infinite sample length. They observed an onset
velocity of 147 mm/s for the faceted growth, and estimated the
thermal gradient was about 8 K/mm. However, if we use this
thermal gradient, we found that the weighted thermal gradient
Gn, based on the thermal conductivities of the melt and solid,
is always positive for the range of the velocity investigated in
their experiments (50–250 mm/s). This implies that the interface
should remain planar at G¼8 K/mm. In other words, their model
did not give consistent thermal gradients in silicon to develop the
facets.

In fact, the sample length in [3] was around 20 mm, and the
silicon wafer was inside a quartz box for solidification. Because
quartz has a much lower thermal conductivity than silicon, the
thermal gradient inside silicon with both ends almost insulated
could be much lower than that of the furnace (�8 K/mm), which
was controlled by two graphite heaters. If two ends of the silicon
wafer were assumed to be adiabatic, the thermal profile of the
silicon wafer could be estimated from the heat exchange between
the silicon and the ambient. Since the heat transfer from silicon
to ambient is through quartz by conduction and then to the
ambient by convective heat transfer of argon and thermal radia-
tion, the effective heat transfer coefficient heff could be estimated
as follows:

1

heff
¼

1

kq=lq
þ

1

kAr=dTþ4seT4
m

, ð3Þ

where kq and kAr are the conductivities of quartz and argon,
and lq, and dT are the thicknesses of quartz and the thermal

boundary layer of argon, respectively. Also, s and e are the
Stefan–Boltzmann constant and the emissivity of quartz, respec-
tively. The parameters in Eq. (3) are listed in Table 1. Based on
these values, heff is about 80 W/m2 K. Furthermore, if we assume
the heat absorption from the hot zone is equal to the heat loss to
the ambient, the average temperature gradient of silicon wafer for
conduction is estimated to be only around 0.16G. This indicates
that the actual temperature gradient in the silicon wafer is much
smaller than that in the ambient.

On the other hand, if we still want to use the convenient
analytical temperature distribution derived in [3], i.e., a pseudo-
steady state approximation for a long sample, a simple way is to
use a smaller ambient thermal gradient for simulation. As will be
discussed shortly, G¼1 K/mm seems to be a proper value to use
as we compare the calculated thermal gradients at the interface
with those obtained by a transient simulation.

3. Phase field model

The phase field model used here is based on the thin-interface
model proposed by Karma and Rappel [7]. The phase field variable
f is set to 1 in the solid, �1 in the melt, and 0 at the interface.
To represent the model in dimensionless, the length is rescaled by
W0, which characterizes the interface thickness, and the time t is
rescaled by t0, which characterizes the atomic movement and the
length. The velocity V is rescaled by W0/t0. The dimensionless
variables are denoted by a superscript asterisk, unless otherwise
stated. For the pulling velocity Vp, the dimensionless phase field
equation could be written as follows:

tnðnÞð@f
@tn
�Vp

n @f
@xn
Þ ¼r

n Wn
ðnÞ2rnf
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where tnðnÞ ¼ as
2ðnÞþ b0Dm

a1a2W0
asðnÞakðnÞ

h i
for the thin-interface

model, where n is the normal direction at the interface and
as(n) is the anisotropy function for the interfacial free energy, b0

is the kinetic coefficient, Dm is the mean diffusivity, a1 and a2 are
constants [7], and ak(n) is the anisotropy function for the kinetic
coefficient. Moreover, Vn

p is the dimensionless pulling velocity and
Wn(n)¼as(n), Also, lc is a coupling constant between phase field
and temperature field and u is the dimensionless temperature, i.e,
u¼Cp,l(T�Tm)/DH, where T is the temperature, Cp,l is the specific
heat of the liquid, and DH is the heat of fusion.

For small anisotropy (e4o1/15), the interfacial anisotropy
function for a four-fold system can be described as the following:

asðnÞ ¼ 1þe4 cosð4yÞ, ð5Þ

where y is the angle between the local growth direction and the
pulling direction. If the strength e4 is greater 1/15, we convexify
the polar plot of the reciprocal interfacial energy by a tangent line
to resolve the missing orientation [8]. For the kinetic anisotropy
function, we follow the relation proposed by Miller et al. [16], but

Table 1
Properties of silicon and environment.

Properties Name Value

kq Thermal conductivity of quartz (W/mK) 4.3

kAr Thermal conductivity of argon (W/mK) 1.7�10�2

lq Thickness of quartz (m) 10�3

dT Thermal boundary layer of argon (cm) 1 (Estimated)

s Stefan–Boltzmann constant (W/m2 K4) 9.6�10�8

e Emissivity of silicon (dimensionless) 0.3
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