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a b s t r a c t

The structure and dynamics of cellular solidification fronts produced during the directional solidification
of dilute binary alloys are studied by phase-field simulations. A quantitative phase-field model in
conjunction with a multi-scale simulation algorithm allows us to simulate arrays with 10–40 cells in
three dimensions on time scales that are long enough to allow for a significant reorganization of the
array. We analyze the geometry of the complex two-phase structure (mushy zone) and extract the
fraction of solid and the connectivity of the two phases as a function of depth. We find a transition from
stable arrays at high values of the crystalline anisotropy to unsteady arrays at low anisotropy that
continuously exhibit tip splitting and cell elimination events.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solidification of alloys can produce patterns of great
geometrical complexity, such as dendrites, cells, or multi-phase
composites. The study of these structures is a classic subject in
metallurgy, because their presence leads to an inhomogeneous
distribution of alloy components (microsegregation), which has an
important influence on the properties of the finished material
[1,2]. Besides this practical aspect, microstructure development is
also an example for spontaneous pattern formation out of equili-
brium [3]. Therefore, solidification experiments can be used to
investigate fundamental aspects of self-organization.

One of the simplest situations that can be studied is the
directional solidification of a dilute binary alloy: a temperature
gradient G is set up between two furnaces, and the alloy sample is
pulled with constant velocity V from the hot to the cold zone. For
dilute alloys, a well-know sequence of morphological transitions
takes place with increasing velocity V. Below a critical value Vc, the
interface remains planar, whereas above Vc, a morphological
instability (Mullins-Sekerka instability [4]) takes place and leads
to the emergence of complex patterns. For a certain range of
velocities, the interface adopts a cellular morphology, that is,
smooth “fingers” of solid are separated by grooves of liquid.
If the velocity is further increased, the cells become more pointed,
and finally develop into dendrites that exhibit lateral branches.
For even higher velocities, there are further transitions back to

cells and finally to a planar interface (absolute stability) [1]. This
high-velocity regime will not be addressed here.

The properties of these various morphologies, as well as the
transitions between them, have been extensively studied by
experiments, theory, and modelling. On the experimental side, a
large amount of work has been devoted to the solidification of
transparent organic alloys in thin samples [5–16]. This technique
allows for a direct in situ observation by optical microscopy.
Furthermore, if the sample thickness is smaller than the typical
spacing between the cells or dendrites, two-dimensional models
are often a good approximation which facilitates both theoretical
analysis [17,18] and numerical modelling [13,19–25]. For a theore-
tical analysis, a good starting point are the spatially periodic
solutions of the growth problem, characterized in two dimensions
by a single parameter—the spacing. Such solutions generally exist
over a large range of spacings, and are stable within a certain
spacing interval that depends on the control parameters G and V
[9,16,21]. Outside of this stable range, various secondary instabil-
ities can occur, for example cell elimination for small spacings and
oscillatory instabilities for large spacings [8,11,21]. In numerical
simulations it was found (both in two and three dimensions) that
the stability limits strongly depend on the anisotropy of surface
free energy that is due to the crystal structure [12,21,26].

Since there is a range of possible spacings for each set of control
parameters, it is natural to ask which one will be obtained in
experiments. To answer this question, it turns out that it is
necessary to follow the front dynamics from its starting point.
In experiments, the initial condition is usually the equilibrium
state of the system at rest, that is, an equilibrium interface at its
equilibrium liquidus isotherm. Theories and models often start
from the unstable steady state of the planar interface, because the
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initial stages of the dynamics (the development of the linear
instability) are well understood for this case. In both scenarios,
for typical parameters used in experiments, the final cell spacing is
much larger than the wavelength of the fastest growing unstable
mode. As a result, many small cells develop at the onset of the
instability, and then the front undergoes numerous cell elimina-
tions until it reaches a steady state. This scenario, which was
analyzed more quantitatively by Warren and Langer [27], is in
qualitative agreement with the thin-sample experiments [9,11,16],
and was also confirmed by large-scale two-dimensional phase-
field simulations [24]. These works also clarified that the final
spacing can to some degree be controlled by suitable changes of
the growth velocity during the experiment.

Much less information is available for three-dimensional fronts,
for various reasons. In experiments with bulk samples, convection
is always present, which considerably complicates the interpreta-
tion of the results. Furthermore, a direct in situ visualization is
much more difficult that in thin samples. Both of these problems
can be circumvented by experiments carried out in microgravity
and equipped with innovative optical instruments [28,29]. On the
modelling side, three-dimensional phase-field simulations of
extended systems are still computationally costly, and only a few
studies are currently available. Of these, Refs. [30,26] were carried
out with phase-field models that do not describe alloy solidifica-
tion well, because the solute diffusivity was taken identical in both
phases. Works that use quantitative models for alloy solidification
are either limited to the vicinity of the cellular bifurcation [31] or
to confined systems [32–34].

Here, we present preliminary results of three-dimensional
phase-field simulations of dilute binary alloys in domains that
are large enough to contain between 15 and 40 cells, such that the
effect of confinement (if present) is weak. The simulations are
carried out using an efficient quantitative model for alloy solidi-
fication [35] and a multi-scale simulation algorithm that uses a
cloud of random walkers to represent the large-scale diffusion
field far from the solidification front [36,37]. This allows us to
reach simulation times that are large enough for significant
reorganization of the cellular array to occur. As a result, the
pattern reaches either a steady state or a dynamical state in which
the average geometry of the cells (spacing, tip position, etc.) does
not evolve in time any more.

Various geometric properties of the front are then extracted.
Obviously, the first interesting property is the number and shape
of cells. For a reasonably complete characterization of the front
geometry, properties such as the statistics of distances between
the cell tips, of the number of neighbors, or of the segment lengths
of the minimal spanning tree (see for example Ref. [29]) would be
of interest. However, our domains are still too small for such
statistical analyses to be significant. Therefore, we only extract the
average spacing and compare its behavior to the available standard
scaling theory [2].

We also study the fraction of solid and the connectivity of the
solid phase as a function of depth. While these quantities are
highly important for the macroscopic description of mushy zones,
they have been little studied so far because they are difficult to
obtain from experiments. In particular, only when the flanks of the
cells have coalesced, a continuous “skeleton” of solid is formed that
can sustain mechanical stresses. We determine the depth at which
the solid percolates in the plane perpendicular to the growth
direction. This point marks the transition from a liquid-like to a
solid-like behavior and can therefore give an indication for the
extension of the mushy zone.

Finally, we also study the influence of the crystalline anisotropy
on the cellular patterns. We confirm the earlier results obtained
with a qualitative model [26]: only for relatively high anisotropies,
the front rapidly converges to a steady state. For the values of the

anisotropy typically found in metals [38], the front continually
exhibits cell elimination and cell splitting events and does not
reach a steady state on the time scale of our simulations. This
raises the question whether stable arrays of deep cells can exist in
experiments.

The remainder of the paper is organized as follows: in
Section 2, we briefly present the sharp-interface and phase-field
models. In Section 3, we display our results and discuss their
implications in the light of available literature, and Section 4 is
devoted to conclusions and perspectives for future work.

2. Models

Both the free-boundary problem and the phase-field model for
dilute alloy solidification have been discussed in detail in previous
publications [35,31]; therefore, we will limit ourselves here to a
summary description.

2.1. Free-boundary problem

We consider the solidification of a dilute binary alloy made of
substances A and B, with an idealized phase diagram that consists
of straight liquidus and solidus lines of slopes m and m/k,
respectively, where k is the partition coefficient. The concentra-
tions cs and cl (in molar fractions) of impurities B at the solid and
liquid side of the interfaces satisfy the partition relation,

cs ¼ kcl: ð1Þ
For the directional solidification of a sample with composition c∞,
at a flat steady-state interface we have cs ¼ c∞ and cl ¼ c∞=k
because of global mass conservation. In the absence of kinetic
effects, the interface temperature is equal to T0 ¼ Tm−jmjc∞=k
(the solidus temperature), where Tm is the melting temperature
of pure A. We choose T0 as reference temperature, and the
corresponding concentration c0 ¼ c∞=k as reference concentration.

We use the “frozen-temperature approximation”, in which the
temperature field in the sample is externally imposed,

TðzÞ ¼ T0 þ Gðz−VtÞ; ð2Þ
where the temperature gradient G is aligned with the z direction
and the sample is pulled with a constant speed V. Furthermore, we
neglect convection in the liquid. Hence, the solidification dynamics
is entirely governed by solute diffusion.

For convenience, we use a rescaled concentration field

U ¼ c−c0
ð1−kÞc0

: ð3Þ

In the one-sided model, where solute diffusion is neglected in the
solid, the dynamics of the solid–liquid interface and the concen-
tration field in the liquid are given by the following free boundary
problem:

∂tU ¼D∇2U; ð4Þ

½1þ ð1−kÞU�Vn ¼ −D∂nUjl; ð5Þ

Uint ¼ −d0 ∑
2

i ¼ 1
aðn̂Þ þ ∂2aðn̂Þ

∂θ2i

" #
1
Ri

−
z−Vt
lT

: ð6Þ

Here, Eq. (4) describes solute diffusion in the liquid with a
constant diffusivity D. Eq. (5) is the Stefan condition at the solid–
liquid interface which expresses mass conservation: the amount of
solute rejected by the solid, which grows with normal velocity Vn,
must be balanced by the solute flux on the liquid side; ∂n denotes
the derivative normal to the interface. Finally, Eq. (6) is the
anisotropic form of the Gibbs–Thomson condition. The first term
on the right hand side of Eq. (6) describes the capillary effect,
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