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a b s t r a c t

An exact solution of solute diffusion for the stoichiometric-compound/stoichiometric-compound eutectic
is derived for a planar interface. Compared with the previous work, the solution is consistent with the
kinetics of triple-junction, i.e. the eutectic composition is necessarily found at the triple-junction.
Adopting an averaged conservation law at the interface, a general solution is proposed for any kind of
eutectics and phase diagrams. Simulation results in the Ni5Si2–Ni3Si eutectic growth show that the
general solution is a good approximation. The current work makes it possible to incorporate the kinetics
of triple-junction into the eutectic growth model.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Eutectic alloys are important because of their low melting
points, good casting properties and excellent mechanical proper-
ties [1–5]. They are important model systems for the pattern
formation due to their particularly rich variety of interfacial
instabilities [6,7]. They are important for designing the composi-
tion of bulk metallic glass because of their potential high glass-
forming ability (e.g. alloys with lower liquidus temperature near
the eutectic point) [8–10]. Therefore, it is quite an important
theoretical and practical topic to model eutectic growth.

The first step for modeling is to solve the diffusion equation.
In the pioneering work of Jackson and Hunt (JH) [11], the solute
diffusion field in the liquid is approximately described by that of a
planar interface, the concentration on the liquid side of which is
given approximately by the equilibrium eutectic composition.
The solution was extended recently to the multi-phase eutectic
growth [12] and the eutectoid transformation with non-negligible
solute diffusion in the growing phases [13]. This kind of solution
[11–13] limits itself to sufficiently small undercoolings. Donaghey
and Tiller (DT) [14] derived the solution in which the concentra-
tion variation along the planar interface is taken into account. In
order to obtain some physical insights into rapid eutectic growth,
Trivedi–Magnin–Kurz (TMK) [15] simplified the DT solution [14]
to two types of phase diagram: one cigar-shaped in which
the liquidus and the solidus are parallel below the eutectic

temperature and the other in which the equilibrium partition
coefficients are constant and equal. An extension of the TMK
solution [15] to the case where both the interface and solute
diffusion are under local non-equilibrium conditions was carried
out by Galenko and Herlach [16]. This kind of solution [14–16] is
rigorously applicable to the dilute solid-solution alloy systems
with linear liquidus and solidus, even though it is applicable to
rapid solidification and widely used [17–23].

The growing phase during eutectic growth can be a solid-
solution phase (SSP), a stoichiometric compound (SC) or a non-
stoichiometric compound (NSC). The binary-phase eutectics are
then according to the growing phases divided into six different
kinds, i.e. the SSP–SSP, SSP–SC, SSP–NSC, SC–SC, SC–NSC and
NSC–NSC eutectics. Their eutectic phase diagrams can deviate from
the linear assumption so substantially that both the DT [14] and
TMK [15] solutions cannot be used. One common ground of the JH
[11], DT [14] and TMK [15] solutions is that the eutectic composition
is not necessarily found at the triple-junction (TJ). This is incon-
sistent with the kinetics of TJ, even though it is clearly written in the
textbooks [24,25] and shown by the numerical solution [26] for
eutectic growth with the same boundary conditions as the JH model
[11]. For example, the TJ as the interaction of interfaces should
follow the interface kinetics. For a binary-phase eutectic where two
solids α and β are crystallized from one liquid L (Fig. 1), the TJ
belongs to and thus follows the kinetics of both the α=L and the β=L
interfaces. In the case of a planar interface, the TJ is the position
where the growing α and β phases, in front of which is the same
liquid concentration, share the same tangent with the liquid L under
equilibrium conditions or the same growth velocity under non-
equilibrium conditions in the mole Gibbs energy diagram, i.e. the
kinetics of TJ is closely related to the eutectic point in the kinetic
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phase diagram. Appendix A shows the equilibrium and non-
equilibrium phase diagrams and the evolution of kinetic eutectic
point of the Ni5Si2–Ni3Si (γ–δ) eutectic system. As the increase of
growth velocity, the eutectic composition (temperature) increases
(decreases) considerably. This kinetic condition of TJ, however,
cannot be incorporated into all the previous work [11–23].

The current work aims to propose a general solution of solute
diffusion for the lamellar eutectic growth under rapid solidification
conditions. The solution with the kinetic condition of TJ as one
inevitable boundary condition is applicable to any kind of eutectics
and phase diagrams. In what follows, the solute diffusion field is
described firstly for the SC–SC eutectic that is quite important for the
preparation of advanced materials [2–5] (Section 2). The exact
solution without any assumption for the phase diagram shows that
the eutectic composition is necessarily found at the TJ and is
consistent with the kinetics of TJ. After that, an averaged mass
conservation law at the interface is proposed to obtain the general
solution. A comparative study among the JH, exact and general
solutions is carried out for the γ–δ eutectic growth in the Ni–Si alloy
system to show that the averaged method is a good approximation
(Section 3). Our conclusions are summarized in Section 4.

2. Solution of solute diffusion during eutectic growth

Fig. 1 shows a schematic diagram of the binary-phase eutectic
growth. The lamellar spacing is λ and, half the widths of the
lamellar α and β are Sα and Sβ respectively. Attaching the
coordinate system to the growing interface with a constant
velocity V in the Z direction, the diffusion equation in the liquid
is given by

∂2CL

∂X2 þ∂2CL

∂Z2 þ V
DL

∂CL

∂Z
¼ 0 ð1Þ

The boundary condition far from the interface is

CL ¼ C1 at Z ¼1 ð2Þ
and the periodic conditions are

∂CL

∂X
¼ 0 at X ¼ 0 and X ¼ SαþSβ ð3Þ

here CL is the solute concentration in the liquid, C1 is the
concentration far from the interface and DL is the solute diffusion
coefficient. A general solution of Eq. (1) with the boundary
conditions Eqs. (2) and (3) is given by DT [14] as

CL ¼ C1þ ∑
1

n ¼ 0
Bn cos ðbnXÞexp �VZ

DL
ωn

� �
ð4Þ

where bn ¼ 2nπ=λ and ωn ¼ ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2nπ=PeÞ2

q
�=2 with Pe ¼

Vλ=2DL the Peclet number. The Fourier coefficient Bn (n¼ 0;
1;2;……) can be evaluated from the mass conservation law at
the interface

�DL

V
∂CL

∂Z
jZ ¼ 0 ¼

Cn

Lα�Cn

α ; 0rXoSα
Cn

Lβ�Cn

β ; SαoXrSαþSβ

(
ð5Þ

where Cn

Lα, C
n

Lβ , C
n

α and Cn

β are the concentrations at the interface.
If α and β are both SC, the concentrations in the solid Cα and Cβ

are the constant, and so are the concentrations at the interface Cn

α

(¼Cα) and Cn

β (¼Cβ). Combining Eq. (4) with Eq. (5) yields

C1 ¼ f αCαþ f βCβ ð6Þ

Bn ¼ 2
nπωn

ðCβ�CαÞ sin nπf α ; nZ1 ð7Þ

where f α ¼ Sα=ðSαþSβÞ and f β ¼ Sβ=ðSαþSβÞ are the volume frac-

tions of α and β in the solid, and ωn ¼ ½�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2nπ=PeÞ2

q
�=2. In

contrast to all the previous work [11–16], it is the global mass
conservation law (Eq. (6)) but not the Fourier coefficient B0 that is
derived. Therefore, one more boundary condition is needed. From

the kinetics of TJ (Appendix A), the liquid concentration at TJ CTJ
L

equals to the eutectic composition CE

CTJ
L ¼ CE ð8Þ

Then, integrating Eqs. (4) and (8), we have

B0 ¼ CE�C1� ∑
1

n ¼ 1
Bn cos nπf α

� � ð9Þ

In other words, the kinetic condition of TJ is inevitable to derive
the exact solution (Eqs. (4), (7) and (9)) for the SC–SC eutectic.

If the growing phase is the SSP or the NSC, the solid and liquid
concentrations vary along the interface and the partition coeffi-
cient is generally concentration dependent. In this case, the
diffusion equation cannot be solved analytically. Since what
concerned in the eutectic growth model are the averaged interface
kinetic conditions [11–13,15,17–23], an averaged mass conserva-
tion law at the interface (i.e. the averaged method)

�DL

V
∂CL

∂Z
jZ ¼ 0 ¼

C
n

Lα�C
n

α ; 0rXoSα

C
n

Lβ�C
n

β ; SαoXrSαþSβ

8<
: ð10Þ

is proposed currently to obtain an analytical solution. Here C
n

Lα
(C

n

Lβ) and C
n

α (C
n

β) are the averaged concentrations of liquid and
solid at the α=L (β=L) interface. Similarly, combining Eq. (4) with
Eq. (10), we have

C1 ¼ f αC
n

αþ f βC
n

β ð11Þ

Bn ¼
½2 sin ðnπf αÞ=ωnnπ�ðCn

β�C
n

αÞ
½1�∑1

m ¼ 12 sin
2ðmπf αÞ=ωmm2π2f αf β�

; nZ1 ð12Þ

One can see, the kinetic condition of TJ (Eq. (8)) is also inevitable
to obtain B0 (Eq. (9)). Since no assumption is applied for the
properties of eutectic system, Eqs. (4), (9) and (12) are actually a
general solution for any kind of eutectics and phase diagrams. For
the SC–SC eutectic system, C

n

α ¼ Cα and C
n

β ¼ Cβ and the general
solution is a good approximation; please see the calculation results
in Section 3. Otherwise, there can be one, two or three averaged
interface kinetic conditions at the α=L or the β=L interface
depending on the different interface kinetics for the SC [27], SSP

[28,29] and NSC [30–32]. In this case, not only C
n

Lα and C
n

Lβ but also

C
n

α (only α is not a SC) or C
n

β (only β is not a SC) or C
n

α and C
n

β (both α

and β are not SCs) should be determined by the eutectic growth
model, the derivation of which is out the scope of current work.

Fig. 1. A schematic diagram for modeling eutectic growth. A planar interface is
adopted to obtain the solution of solute diffusion in the liquid.
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