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a b s t r a c t

Our objective in the present work is to study the effect of convective flows, ranging from laminar to

fully turbulent, on solute segregation in directional solidification configurations. To do so, numerical

simulations performed in a model 2D lid driven cavity; the problem parameters, apart from the species

molecular diffusion coefficient, are the lid and growth velocities. Purely diffusive to fully convective

mass transport conditions are modelled in our parametric study. In parallel, a scaling analysis aiming at

the determination of the solute boundary layer thickness is proposed. The results show that a single

non-dimensional number, based on the interface stress, is able to capture the physics of the solute

transport phenomena.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Heat and solute transfer issues are of paramount importance
for the control of the crystal growth of semiconductors and
metals from the liquid phase, and specially so in the case of Si
crystals with applications in the microelectronic and photovoltaic
industries, see e.g. [1–3]. In crucible of large dimensions, convec-
tion often dominates solute transport, due to the generally low
values of the Fickian diffusion coefficients. As a consequence, a
number of techniques have been proposed in recent years in
order to tailor fluid flows in the melt. Among them, and without
any claim to exhaustivity, one can think of travelling [3–5],
alternating [6,7], rotating [8] or mixed [9] magnetic fields, as
well as crucible vibration [10], acoustic streaming [11].

One application of interest for industrial purposes, that of the
purification of metallurgical grade silicon by directional solidifi-
cation, relies on the fact that most metals have very low partition
coefficients in Si [12]. Therefore, an efficient solute segregation is
in principle possible, provided of course that the process para-
meters are selected to ensure that the effective and thermody-
namic partition coefficients remain close to each other [13]. Since
high interface velocities are known to lead to effective partition
coefficients approaching unity (see e.g. [14–16]), the development

of efficient stirring systems is a necessity to guarantee an adequate
process productivity.

The purpose of the present paper is to propose a coupled
numerical modelling scaling analysis approach to identify the
requirements in terms of convective flow in order to ensure that
the effective partition coefficient remains small even at high
growth velocities. To do so, rather than aiming at the accurate
description of a given experimental configuration, we will focus
on the model problem of convective and species transport in a
two dimensional domain with a moving boundary opposite to the
crystal growth interface, i.e. in the so-called ‘‘lid driven’’ cavity
flow [17,18].

It should be kept in mind that, in spite of its relatively ancient
nature, the lid driven cavity problem is still a topic of debate, even
at relatively modest Reynolds number. A feature of the targeted
application of metallurgical grade silicon purification is that both
the melt dimensions and the stirring velocities are expected to be
quite large, say at least 20 cm and 10 cm/s, respectively. With
such typical values, the flow field within the cavity is expected to
be fully turbulent for a fluid like silicon that like most metals has
a low kinematic viscosity. Nevertheless, our simulations will
cover both laminar and turbulent flows.

The choice of focusing on an idealised 2D configuration with-
out considering the coupling with heat transfer phenomena
allows to perform a large number of numerical simulations. The
main parameters are the lid and interface velocities, as well as the
species diffusion coefficients, which, even in a material as widely
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studied as silicon, remain subject to large uncertainties [19,20].
The results are presented in terms of the convecto-diffusive
parameter [15,16], which can be easily related to the effective
partition coefficient (see Section 2 below), and has the advantage
of being amenable to a scaling analysis.

Regarding the organisation of the manuscript, Section 2 will be
devoted to a presentation of the problem formulation in mathe-
matical terms, as well as to some basics on solute segregation. We
shall then in Section 3 focus on the numerical technique and
results, before turning in Section 4 to the scaling analysis that
allows to identify the relevant parameters of the solute transport
problem.

2. Background on solute segregation and problem
formulation

It appears interesting at this point to recall some basic ideas on
segregation phenomena. Among the pioneering papers on the
topic, a special mention should be made of the work of Burton,
Prim and Schlichter [14], who were the first to understand the key
role played by the solute rich region ahead of the growth inter-
face. Later on, Wilson [15] proposed a physically sound definition
of this solutal boundary layer thickness d:

d¼�ðCI�C1Þ=ðdC=dZÞI ð1Þ

with CI and CN denoting the composition levels, respectively, at
and far away from the growth interface. The Z-axis points normal
to that interface in the direction of the bulk liquid (see Fig. 1).
In parallel, solute conservation at the solidification front can be
expressed as:

�DðdC=dZÞI ¼ VIð1�kÞCI : ð2Þ

In the above equation, D, VI and k, respectively, stand for the
species molecular diffusivity, the growth velocity and the ther-
modynamic partition coefficient as given by the phase diagram of
the Si-impurity system. Combining Eqs. (1) and (2), one gets an
expression for the effective partition coefficient:

kef f ¼ kCI=C1 ¼ k=ð12ð1�kÞDÞ ð3Þ

D¼dVI/D being a convecto-diffusive parameter whose value
ranges from 0 for the case of intense fluid flow in the fluid
(corresponding to a melt of virtually uniform composition) to one
in purely diffusive solute transport conditions. The control of

impurity segregation is thus reduced to the determination of the
convecto-diffusive parameter D as a function of the process and
thermophysical parameters of the problem, namely in our present
case the lid and interface velocities along with the diffusion
coefficient.

The existence of a well defined range for the variation of the
solute composition ahead of the growth interface allows a further
simplification by the use of order of magnitude, or scaling
analyses [21]. Assuming the time variations to be slow (quasi
steady-state approximation) and the gradients associated to
composition variations parallel to the interface to be negligible,
one can find a simple relation between the solutal boundary layer
thickness, the growth rate and the convection velocity normal to
the interface, taken at the boundary layer scale, W(d) [22]:

D=d¼ VI�WðdÞ: ð4Þ

For conditions where the flow in the melt can be considered
laminar, the predictions of Eq. (4) were found to be in satisfying
agreement with existing numerical [22,23] and experimental
[24] data.

It is one of the objectives of the present work to show that
Eq. (4) can also be used in the case of fully turbulent flow, but this
requires the construction of an adequate velocity profile in the
vicinity of the growth interface to estimate W(d). This will be
done in Section 4, but we first have to present in more detail our
model problem and the numerical procedure. In our 2D square
cavity (see also Fig. 1 for a set of notations), momentum and
species conservation in the melt can be expressed by the classical
Navier–Stokes and Fick equations, written here as:

@V=@tþðV :rÞV ¼�rP=rþnr2V ð5Þ

@C=@tþðV :rÞC ¼Dr2C ð6Þ

In the above equations, V, P, C, r and n, respectively, stand for
the velocity, pressure and composition fields, the volumic mass
and the kinematic viscosity of the fluid. The solid liquid interface
is defined as Z¼0. This amounts to assuming that the Prandtl
number of the fluid is essentially zero, which means that the
interface will not be deformed by motion of the fluid.

From a physical standpoint, in a frame moving with the
interface, the boundary conditions can be expressed as:

Solid–liquid front (Z¼0, 0rXrH):

V ¼ 0 ð7aÞ

�Dð@C=@ZÞI ¼ VIð1�kÞCI ð7bÞ

Lateral walls (X¼0, 0rZrH and X¼H, 0rZrH):

V ¼ 0 ð8aÞ

@C=@X ¼ 0 ð8bÞ

Top wall (Z¼H, 0rXrH):

V ¼ VLeX ð9aÞ

C ¼ C0 ð9bÞ

In Eqs. (9a) and (9b), VL and C0, respectively, stand for the lid
velocity and a reference concentration.

Since we consider only dilute alloys (even in metallurgical
grade Si the total impurity content rarely exceeds 1%), the
volumic mass and the kinematic viscosity of the fluid will be
taken equal to those of pure silicon, namely r¼2.55�103 kg/m3

[25], n¼3.5�10�7 m2/s [26,27]. On the other hand, the species
diffusion coefficient will be taken as a problem parameter, since,
in addition to the intrinsic uncertainties mentioned earlier, we are
interested in the segregation of all possible impurities. At this
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Fig. 1. Problem geometry and coordinate axes. Schematic iso-stream function and

iso-concentration lines are also shown.
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