Contents lists available at ScienceDirect ## Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro ## Epitaxially strained Na_{0.7}CoO₂ thin films on SrTiO₃ buffer layer J.Y. Son, Y.-H. Shin, Hyungjun Kim* Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea #### ARTICLE INFO Article history: Received 20 October 2008 Received in revised form 17 November 2008 Accepted 20 November 2008 Communicated by M. Kawasaki Available online 25 November 2008 PACS: 61.05.cp 71.30.+h 72.15.-v Keywords: A1. Crystal structure A1. X-ray diffration A3. Laser epitaxy B1. Oxides #### ABSTRACT We prepared $Na_{0.7}CoO_2$ thin films on (0 0 1) Al_2O_3 substrates that showed a negligibly strained structure and a metallic behavior similar to $Na_{0.7}CoO_2$ single crystal. In particular, a $Na_{0.7}CoO_2$ thin film on a (111) $SrTiO_3/(0\,0\,1)$ Al_2O_3 substrate exhibited an elongated c-lattice constant as well as an anomaly in the electric transporting behavior: a transition from an insulating state to a metallic state at 105 K. This change is caused by the structural symmetry break near the cubic-to-tetragonal transition temperature of $SrTiO_3$. From spectroscopic ellipsometry analysis, we obtained optical conductivities for the $Na_{0.7}CoO_2$ thin films on the Al_2O_3 and $SrTiO_3/Al_2O_3$ substrates. The $Na_{0.7}CoO_2$ thin film on the $SrTiO_3/Al_2O_3$ substrate exhibited higher energy splitting between e_g and a_{1g} than the $Na_{0.7}CoO_2$ thin film on the Al_2O_3 substrate, resulting from the c-lattice elongation. © 2008 Elsevier B.V. All rights reserved. #### 1. Introduction Sodium cobalt oxide Na_xCoO₂ has been attractively researched due to its large thermoelectric power and low resistivity for various thermoelectric applications [1]. In Na_xCoO₂, large thermoelectric power is attributed to spin entropy in a low-spin state of Co ion [2]. Many theoretical and experimental interests were triggered by superconductivity of Na_{0.35}CoO₂ · 1.3H₂O, rich phase diagrams of Na_xCoO_2 with respect to x, and novel ground states induced by two-dimensional transition-metal oxide triangular lattice [3-5]. In addition, Na_xCoO₂ depending on the sodium content x exhibited complicated metallic transport behaviors with various magnetic orderings of paramagnetic metal, "Cure-Weiss" metal (anitiferromagnetic ordering), and spin-density wave (SDW) metal except a charge ordering state of anitiferromagnetic ordering [6,7]. Behind the rich physical properties, two-dimensional triangular lattice and mixed valence character led to puzzling ground states [6,7]. The crystal structure of Na_xCoO_2 consists of two-dimensional triangular CoO_2 layers of edge-sharing CoO_6 octahedrons separated by an insulating layer of Na^+ ions. There are four known phases of α -, α' -, β -, and γ -distinguished by the stacking orders of CoO₂ layers and the concentrations of Na ions [8]. A β-phase has a monoclinic unit cell with a space group symmetry of C2/m and lattice constants of a=4.90, b=2.83, c=5.72 Å, and β =105.96° and a γ -phase has a hexagonal structure with a space group symmetry of P6₃/mmc and lattice constants of a=2.84 and c=10.81 Å [9,10]. In γ -Na_xCoO₂, the in-plane directions of CoO₆ octahedra along the out-of-plane direction of CoO₂ layers are alternating with the type of A–B, B–A, A–B, etc. where A and B are oxygen layers. These structural varieties of Na_xCoO₂ imply that the bulk modulus along the in-plane direction is small and the stress generated by lattice misfit is an important parameter for the growth of epitaxial thin films because of various possible stacking structures of CoO₂ layers and the possibility of the stacking fault. Physical properties obtained from Na_xCoO_2 single crystals and powders have been widely researched but there have been a few reports about thin film studies [11–13]. From the standing point of the strain effect, thin film growth can give an opportunity for a manipulation of physical properties by changing stress using different substrates and growth parameters (substrate temperatures, oxygen partial pressures, etc.). We controlled structures of Na_xCoO_2 thin films from a β-phase with an island growth mode to a γ-phase with a layer-by-layer growth mode by varying a deposition rate [11]. In this study, we report the strain effect on electrical transport properties of epitaxial $Na_{0.7}CoO_2$ thin films deposited on Al_2O_3 and (111) $SrTiO_3/Al_2O_3$ substrates. ^{*}Corresponding author. Tel.: +82542795409; fax: +82542792399. E-mail address: hyungjun@postech.ac.kr (H. Kim). #### 2. Experimental details Na_{0.7}CoO₂ thin films were deposited on (0.01) Al₂O₃ substrates and (111) SrTiO₃/Al₂O₃ substrates by an eclipse pulsed laser deposition (PLD) method. In eclipse PLD, a deposition rate and energies of adatoms simultaneously reduce because high-energy particles are directly screened by a shadow mask. There is a lattice misfit of 2.9% between c-oriented $Na_{0.7}CoO_2$ and (0.01) Al_2O_3 , which induces a compressive stress. A Na_{0.8}CoO₂ target was prepared by a conventional solid-state reaction method [11]. A commercially available 1 in SrTiO₃ target was used for the fabrication of a SrTiO₃ buffer layer on a (001) Al₂O₃ substrate. A frequency tripled (355 nm, ~2 J/cm²) Nd:YAG laser was used for the deposition, and the distance between the target and the substrate was ~4 cm. For the deposition of SrTiO₃ buffer layers, we used a substrate temperature of 800 °C and an oxygen partial pressure of 200 m Torr. For the deposition of Na_{0.7}CoO₂ thin films, the optimum substrate temperature was 480 $^{\circ}\text{C}$ and the optimum partial oxygen pressure was 400 mTorr [11]. On (001) Al₂O₃ substrates, γ-Na_{0.7}CoO₂ thin films with a layer-by-layer growth mode were grown by using a low deposition rate of 0.02 Å/pulse. The thickness of the Na_{0.7}CoO₂ thin films and the thickness of the SrTiO₃ buffer layers were, respectively, ~1000 and ~500 Å determined from cross-sectional scanning electron microscope (SEM) images. Tentative compositions of Na_{0.7}CoO₂ thin films were confirmed by energy dispersive X-ray spectrometer (EDS). For structural analysis, X-ray diffraction (XRD) data were obtained by a conventional laboratory X-ray diffractometer (CuKα1 radiation, 1.540 Å). Surface morphologies and topographies of Na_{0.7} CoO₂ thin films were observed by scanning probe microscope (SEM) and atomic force microscope (AFM). Temperature dependence of resistivity was measured in the temperature range 6-350 K. We analyzed spectroscopic ellipsometry data with an incident angle of 70° by a multi-wavelength variable-angle ellipsometer (J.A. Woollam Co.). At the energy range of 0.7–6.0 eV, ellipsometry parameters of Ψ and Δ were measured and these parameters are defined by $R_{\rho}/R_{\rm s}$ =tan $\Psi \exp(i\Delta)$, where R_o and R_s are complex reflection coefficients for the polarized light in parallel and perpendicular to the plane of incidence, respectively. Based on a Levenberg–Marquardt Algorithm, we fit Ψ' and Δ' for a model of Na_{0.7}CoO₂ thin films to experimental parameters of Ψ and Λ . #### 3. Results and discussion Fig. 1(a) shows the XRD pattern of the $Na_{0.7}CoO_2$ thin film on the (001) Al_2O_3 substrate. For the (002) peak, the full-width at half-maximum (FWHM) of the rocking curve was about 0.8° . The c-lattice constant of 10.8 Å was obtained from the 2θ values of the (0.02) and (0.04) peaks, which agrees well with the experiment for the variation of c-lattice constants depending on Na concentration [4]. To check an in-plane crystalline structure, we performed Φ -scans. Fig. 1(b) shows Φ -scans for the (1.04) peaks of the epitaxial Na_{0.7}CoO₂ thin film and the (1.04) peaks of the (0.01) Al₂O₃ substrate. The six-fold symmetry of the (1.04) peak represents a hexagonal structure of the Na_{0.7}CoO₂ thin film with twinning. The FWHM of an in-plane (1.04) peak for a θ - 2θ scan was about 0.55° . From the 2θ value of the (1.04) peak, we obtained a hexagonal a-axis constant of 2.8 Å. In order to modify lattice misfit, we used a (111) SrTiO₃ buffer layer between a Na_{0.7}CoO₂ thin film and an Al₂O₃ substrate. A SrTiO₃ buffer layer can give a lattice misfit in the range 2.4–2.9%. Fig. 2(a) shows the XRD pattern of the Na_{0.7}CoO₂ thin film on the (111) SrTiO₃/Al₂O₃ substrate. For the (002) peak, the FWHM of the rocking curve was about 0.9° which is larger than 0.8° of the Na_{0.7}CoO₂ thin film on the (001) Al₂O₃ substrate. From the 2 θ value of the (002) peak, the c-lattice constant of 11.4Å was obtained and this c-lattice constant is larger than that of the Na_{0.7}CoO₂ thin film on (001) Al₂O₃ substrate. This elongation of the c-lattice constant indicates that the Na_{0.7}CoO₂ thin film adequately released a stress induced from the lattice misfit. Fig. 2(b) shows Φ -scans of the (104) peaks of the epitaxial Na_{0.7}CoO₂ thin film, the (104) peaks of the SrTiO₃ buffer layer, and the (104) peaks of the SrTiO₃/Al₂O₃ substrate. The SrTiO₃ buffer layer and the Na_{0.7}CoO₂ thin film have six-fold symmetry with twinning. The FWHM of the in-plane (201) peak of the Na_{0.7}CoO₂ thin film is about 1.25° and this FWHM value is also lager than that of the Na_{0.7}CoO₂ thin film on the (001) Al₂O₃ substrate. From the 2 θ value of the (104) peak, a hexagonal α -axis constant of 2.8 Å was obtained. Consequently, the Na_{0.7}CoO₂ thin film on the (111) SrTiO₃/Al₂O₃ substrate has a larger strain than the Na_{0.7}CoO₂ thin film on the (001) Al₂O₃ substrate. We observed spiral patterns with multi-terraces in the AFM image of the $Na_{0.7}CoO_2$ thin film on the (111) $SrTiO_3/Al_2O_3$ substrate (not shown). The terrace heights were close to the c-lattice constant. The terrace width of $\sim 100\,\mathrm{nm}$ was observed, indicating that the thin film had an atomically flat surface. Moreover, this large width of the terraces represents that surface diffusion lengths of adatoms are quite long and kinetics of steps is widespread [13]. The root mean square (RMS) surface roughness was about 1.0 nm. Fig. 3 shows the temperature dependence of resistivities for the $Na_{0.7}CoO_2$ thin films on the (001) Al_2O_3 and (111) $SrTiO_3/Al_2O_3$ substrates. The resistivity of the $Na_{0.7}CoO_2$ thin film on the (001) Al_2O_3 substrate shows a metallic behavior similar to the Fig. 1. (a) The XRD pattern of the epitaxial $Na_{0.7}CoO_2$ thin film on the (0 0 1) Al_2O_3 substrate. (b) The Φ-scans of the (10 4) peaks of the epitaxial $Na_{0.7}CoO_2$ thin film and the (10 4) peaks of the (0 0 1) Al_2O_3 substrate. ### Download English Version: # https://daneshyari.com/en/article/1794571 Download Persian Version: https://daneshyari.com/article/1794571 Daneshyari.com