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Abstract

The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One
of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-
standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is
given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the
morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
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1. Introduction

The phase-field method has been used for numerical
modelling of solidification microstructures for more than
20 years (for a recent review, see Ref. [1]). While in the
beginning its predictive capabilities were limited, in recent
years progress both in the formulation of the models and in
their implementation has made it possible to obtain
quantitative results in three dimensions that can be directly
compared to experiments. Therefore, this method can now
be used to gain new insights into problems of micro-
structure formation and morphological stability. The goal
of the present paper is to provide a brief introduction to the
phase-field method and its implementation in numerical
simulations, and to illustrate its capabilities and limitations
by a few examples taken from the directional solidification
of binary alloys.

Problems of microstructure formation and morphologi-
cal stability have been traditionally formulated as free
boundary problems, in which the solid and liquid phases are
separated by mathematically sharp boundaries which move
in time and have often very complicated shapes (for
reviews, see Refs. [2,3]). The implementation of this
formulation in numerical simulations, however, is cumber-
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some since these boundaries have to be explicitly tracked.
The phase-field method avoids this problem by introducing
one or several supplementary scalar fields, the phase
fields, which indicate the local state of the system for each
space point. They take fixed values in the bulk and vary
continuously through interfaces of a characteristic finite
width W. The phase fields can be seen as order parameters,
and the equations of motion, derived from Ginzburg—Lan-
dau type free energy functionals, are standard partial
differential equations which are simple to solve; the shape
of the interfaces is then implicitly given by a certain level
curve of the phase field.

The price to pay for this simplicity is the introduction of
the new scale W into the problem. The thickness of a
typical rough solid-liquid interface is of the order of a
nanometer, whereas typical microstructural patterns have
features on the micron scale, and the entire sample is
even much larger. Clearly, it is unfeasible to resolve
numerically all these scales at the same time, even with
modern supercomputers. In order to simulate microstruc-
tural patterns efficiently, the interface thickness has to be
artificially enlarged in the model. In general, this introduces
a dependence of the simulation results on the interface
thickness W. A major progress has been the development
of phase-field models for specific simple physical situations
in which the dominant contribution to this dependence can
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be eliminated either by a suitable choice of parameters or
by the addition of correction terms in the equations which
cancel the undesired effects [4-9]. It has been demonstrated
in detailed benchmark simulations that the simulation
results are virtually independent of the interface thickness
as long as it remains about an order of magnitude smaller
than the smallest structural length scale. These models will
be called “quantitative phase-field models™ in the remain-
der of this paper. All the simulation results presented here
are obtained with such models.

The results presented here concern microstructures
formed during the directional solidification of dilute and
eutectic binary alloys. The typical structures observed in
dilute alloys are cells or dendrites, whereas in eutectics
lamellar or rod-like two-phase composite patterns arise.
A classic question is then which type of structure and which
spacings can be observed for given conditions, and if there
is a mechanism which leads to the selection of a particular
structure or spacing [10]. This question has been exten-
sively studied in thin samples, where patterns are quasi
two-dimensional and convection in the liquid is suppressed.
The results of both experimental and numerical investiga-
tions show that in general there exists, for given processing
conditions, a range of stable spacings. The maximum and
minimum stable spacings are set by the occurrence of
dynamical instabilities that break one or several symmetry
elements of the original patterns. If these spacings are
plotted as the function of the control parameters, the so-
called stability balloon of the periodic pattern is obtained.
Different spacings inside this stable balloon can then be
selected, either by the growth history or by boundary
effects. These general features are common to many
pattern-forming systems [11,12].

Whereas the situation is fairly well understood in thin
samples, much remains to be learned about fully three-
dimensional samples. The situation is complicated both
by the effects of convection which is always present in
bulk samples (except in microgravity) and by the fact
that the structure and dynamics of three-dimensional
patterns (two-dimensional fronts) are far richer than in
two dimensions (one-dimensional fronts). Numerical
simulations can be of great help to provide a useful
starting point for the analysis: the situation can be first
analyzed without convection and in a setting that is well
controlled. As an example, it is shown here how the
stability balloons for hexagonal cells in binary alloys and
for lamellar eutectic patterns can be obtained. In parti-
cular, for cells the influence of crystalline anisotropy is
studied and compared to the known results in two
dimensions [13,14]. For ecutectics, a zig-zag instability
recently observed in experiments [15] is characterized,
and it is shown that this is the only instability that is
experimentally observable.

The remainder of the paper is organized as follows. In
Section 2, the basic free boundary problem of directional
solidification is outlined and the corresponding phase-field
model is presented. Sections 3 and 4 are devoted to the

stability of cellular and eutectic patterns, respectively,
followed by conclusions and an outlook in Section 5.

2. Phase-field model
2.1. Free-boundary problem

The classic free-boundary problem and its phase-field
representation have been discussed extensively in the
literature [1-3]. The purpose of the present exposition is
therefore not to give a detailed derivation or a review of
different approaches to construct phase-field models;
rather, its intention is to recall the main points with an
emphasis on the ingredients needed in the context of
directional solidification. A detailed presentation of the
phase-field models used for the present work can be found
in Refs. [4,7,9].

The directional solidification of a dilute binary alloy
made of substances A and B is considered. For a complete
modelling of the whole process, the thermal, concentration,
and flow fields would have to be included. However, even
though phase-field models including hydrodynamics [5] or
thermal and solutal diffusion [§8] have been developed, they
remain to date computationally too costly to carry out
systematic studies as intended here. Therefore, convection
is neglected, and the “frozen-temperature approximation”
is used, in which the temperature field in the sample is
externally imposed,

T(z) = To+ Gz — V), (1)

where the temperature gradient G is aligned with the
z direction and the sample is pulled with a constant
speed V5.

A dilute alloy is considered which has an idealized phase
diagram consisting of straight liquidus and solidus lines
of slopes m and m/k, respectively, where k is the partition
coefficient. The concentrations ¢; and ¢ (in molar
fractions) of impurities B at the solid and liquid sides of
the interfaces satisfy the partition relation

¢ = kay. (2)

For a sample with composition ¢, the solidus temperature
To = T — |m|coo/k (Where T, is the melting temperature
of pure A) and the corresponding equilibrium liquid
concentration ¢y = ¢ /k are chosen as reference tempera-
ture and composition, respectively.

With the temperature field fixed by Eq. (1), the dynamics
of the solidification front is governed by the redistribution
of solute. The classic free boundary problem is

dc = D Ve, (3)
(a1 — eV =i [DVely — DyVel]], )
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