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Abstract

The study deals with the convective flows in a liquid bridge, maintained between the melting end of a feed rod and the solidifying end

of a crystal, in the floating zone process. The surface tension is assumed to be dependent both on the temperature and on the solute

concentration. The study is carried out for zero gravity conditions. The free surface deformations and the curvature of the phase change

surfaces are neglected. The first part of the study concerns axisymmetric steady flows. Numerical modeling is performed by finite

difference method for the parameters, which correspond to the floating zone growth of GeSi alloyed crystal. The calculations show that

the evolution of convective flow with the variation of thermal Marangoni number at fixed value of the solutal Marangoni number is

accompanied by the hysteresis phenomena, which is related to the existence of two stable steady regimes in certain parameter range. One

of these regimes is thermocapillary dominating, corresponding to the two-vortex flow, and the other is solutocapillary dominating,

corresponding to the single-vortex flow. The existence of two stable axisymmetric steady regimes in the floating zone process with surface

tension depending both on temperature and on the concentration of solute was also observed in Walker et al. [Int. J. Heat Mass Transfer

45 (2002) 4695], where convective flows in the floating zone under strong magnetic field and gravity were studied. The second part of the

paper concerns linear stability of axisymmetric steady regimes to three-dimensional perturbations, periodical in azimuthal direction. Two

methods are applied to study the stability. First method is based on the direct numerical simulation of temporal evolution of small

perturbations of basic state. According to the second method, the exponential dependence of the perturbations on time is assumed. The

discretization of the equations by finite difference method leads to the generalized eigenvalue problem. Numerical solution of this

problem allows to determine the boundaries of the stability of axisymmetric steady regimes to three-dimensional perturbations with

different azimuthal numbers. Stability maps in the parameter plane thermal Marangoni number–solutal Marangoni number are obtained

for different values of crystallization velocity and aspect ratio.
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1. Introduction

Let us consider convective flows in a liquid bridge
maintained between the melting end of a feed rod and the
solidifying end of a crystal in the floating zone process in
zero gravity conditions. The surface tension is assumed to
be dependent both on the temperature and on the solute
concentration. The free surface deformations and the

curvature of the phase change surfaces are neglected. We
obtain the following dimensionless momentum, continuity,
energy and concentration equations:

q~V
qt
þ ~V � V g~e

� �
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The boundary conditions are:
at the liquid–solid interfaces:

at z ¼ 0 : ~V ¼ 0; T ¼ 0,
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¼ �Sc V g 1� k0ð ÞCjS, ð5Þ

at z ¼ L : ~V ¼ 0; T ¼ 0,

qC

qz

� �
S

¼ �Sc V g C � 1ð ÞjS, ð6Þ

at the free surface r ¼ 1 :

Vr ¼ 0;
(7)

qV z

qr
¼ �MaT Pr�1

qT

qz

� �
þMaC Sc�1

qC

qz

� �
, (8)
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@C

@r
¼ 0, (10)

@T

@r
¼ �Bi T � Tað Þ. (11)

Here k0 is the segregation coefficient, Ta ¼ e�ð2z�LÞ2 .
Equations and boundary conditions are written in dimen-

sionless form. The following quantities are used as the scales
for the velocity, pressure, solute concentration, temperature,
time and length: ½V � ¼ n=R, ½p� ¼ rn2=R2, ½C� ¼ Cf , ½T � ¼
DT ( DT ¼ T1 � T0), ½t� ¼ R2=n, ½r� ¼ R. Dimensionless
parameters of the problem are Prandtl number Pr ¼ n=w,
Schmidt number Sc ¼ n=D, dimensionless crystal growth rate
V g ¼ ucrR=n, Biot number Bi ¼ �s�T3

1R=w, thermal Maran-
goni number MaT ¼ s0TDTR=ðrnwÞ, solutal Marangoni num-
ber MaC ¼ s0CCfR=ðDnÞ and aspect ratio L ¼ H=R, where n
is kinematic viscosity, w is the thermal diffusivity, e is effective
heat flux coefficient, s� is Stefan–Boltzmann constant, Cf the
initial distribution of solute, r is melt density.

Most of the calculations were made for fixed values of
the parameters Sc, Pr, Bi, L: Sc ¼ 22.5, Pr ¼ 0.00771,
Bi ¼ 2.0, L ¼ 2. Dimensionless crystallization rate Vg was
varied in the range from 0 to 0.1 and the values of thermal
and solutal Marangoni numbers in the ranges
0pMaTp30�100 000pMaCp100 000.

2. Basic state

The problem allows steady axisymmetric solutions. It is
convenient to solve the problem for these solutions in terms
of the stream function (c) and vorticity (O):
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.

Then, the equations and boundary conditions take the
following form:
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at r ¼ 0 : c ¼ O ¼
@C0

@r
¼
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¼ 0, (16)

at r ¼ 1 : c ¼
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at z ¼ L : c ¼
@c
@z
¼ T0 ¼ 0,
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Problem (12)–(19) was solved numerically by finite
difference method. The results of calculations are presented
in Figs. 1 and 2. In the floating zone process, the
thermocapillary and solutocapillary mechanisms induce
the flows with different structure. The surface tension
variations due to the temperature inhomogeneities drive
two toroidal axisymmetric cells above and below the
hottest center plane of the zone. Solutocapillary flow
arising due to the surface tension variations related to the
compositional inhomogeneities has one-cellular structure.
At small values of the thermal Marangoni number, the
contribution of the thermocapillary convection is small and
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