

JOURNAL OF CRYSTAL GROWTH

Journal of Crystal Growth 298 (2007) 140-144

www.elsevier.com/locate/jcrysgro

Post-growth thermal annealing of high N-content GaAsN by MOVPE and its effect on strain relaxation

Pawinee Klangtakai^a, Sakuntam Sanorpim^{a,*}, Kajornyod Yoodee^a, Wataru Ono^b, Fumio Nakajima^b, Ryuji Katayama^b, Kentaro Onabe^b

^aDepartment of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand ^bDepartment of Advanced Materials Science, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Available online 4 December 2006

Abstract

We report on the further investigation of the effect of post-growth thermal annealing on optical and structural properties of the high N-content $GaAs_{0.949}N_{0.051}$ layer grown on a $GaAs(0\,0\,1)$ substrate by metalorganic vapor phase epitaxy (MOVPE). Photoluminescence (PL) spectroscopy was performed to measure the energy positions of the near band edge excitonic emission. The high-resolution X-ray diffraction and Raman spectroscopy were conducted to examine the lattice parameters, also the N concentration of the layers annealed at 650 °C with different annealing times. The layer subjected to thermal anneals exhibits an increasing of N incorporation, a strain relaxation and a blue shift of the PL peak energy. For such high N-containing layer, the interstitial N atoms generated in the growth process may replace the As atoms/vacancies on the lattice sites to become more stable substitutional N atoms through the thermal annealing process, which will produce the strain relaxation, in addition to an improvement of the alloy uniformity. Our results suggest the two major effects: (i) the reorganization of N and (ii) the strain relaxation in the GaAsN layer that can be explained the blue shift in the PL peak energy after annealing.

© 2006 Elsevier B.V. All rights reserved.

PACS: 61.10.Nz; 68.37.Yz; 78.30.Fs; 78.55.Cr; 78.66.Fd; 81.11.Kk

Keywords: A1. High-resolution X-ray diffraction; A1. Optical property; A3. Metalorganic vapor phase epitaxy; B2. III-V-nitrides; B3. Laser diodes

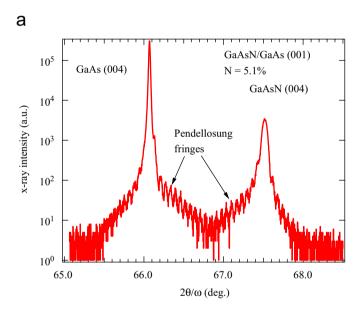
1. Introduction

Great efforts have recently been devoted to the preparation of high-quality GaAsN films with high N incorporation, the characterization of GaAsN films, the development of devices using GaAsN-based materials. Low-bandgap Ga(In)AsN-based heterostructures are expected as useful for optoelectronic devices such as laser diodes emitting at 1.3 and 1.55 μ m for optical communication systems [1–3]. The GaAsN films with N contents up to 5–8% were grown on a GaAs(001) substrate by metalorganic vapor phase epitaxy (MOVPE) [4–6]. However, the optical quality of GaAsN has been found to degrade with higher N incorporation. This

*Corresponding author. Tel.: +66(0)22185110;

fax: +66(0)22531150.

E-mail address: Sakuntam.S@chula.ac.th (S. Sanorpim).


may be due to comparatively to the lower growth temperature commonly used for the III–V nitrides, compared to that for GaAs. Post-growth thermal annealing can improve the luminescence properties significantly, but leads to a blue shift of the photoluminescence (PL) peak energy [7–9]. The structural origin of the effects of post-growth annealing treatments has been an issue. However, there are presently few reports on the effect of post-growth thermal annealing on the high N-containing GaAsN films [4,10,11].

Previously, we reported the results on the MOVPE growth of the high N-content GaAsN films with N content range of 0–5.1% using 1,1-dimethylhydrazine (DMHy), and tertiarybutylarsine (TBAs) as the source materials for N and As, respectively [11]. In this work, we have investigated the influence of the post-growth thermal annealing on structural and optical properties of the high N-content GaAs_{0.949}N_{0.051} film.

2. Experiments

The GaAsN layer with N content of 5.1% was grown on a GaAs(001) substrate at 500 °C by MOVPE using trimethylgallium (TMGa), DMHy, and TBAs as the source materials for Ga, N, and As, respectively. The thickness of the GaAsN layer was examined by high-resolution X-ray diffraction (HRXRD) to be about 200 nm. The N content in an as-grown layer was determined from a symmetrical (004) and an asymmetrical (115) reflections using HRXRD [6,7], by assuming a linear dependence of lattice constant (a_0) on the N content [12].

The post-growth thermal annealing was performed in the growth reactor under TBAs environment at 650 °C for 2 and 5 min. To investigate the influences of the annealing on structural and optical qualities, HRXRD, PL, and Raman scattering measurements were performed. In order to

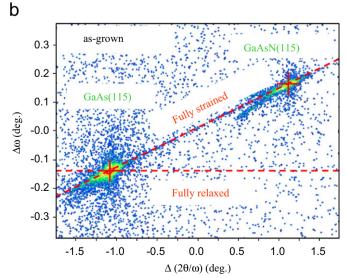


Fig. 1. (a) Symmetrical (004) HRXRD $2\theta/\omega$ curve and (b) asymmetric (115) reciprocal lattice map of the as-grown GaAs_{0.949}N_{0.051} layer.

evaluate the strain relaxation precisely, reciprocal lattice mapping of asymmetrical (115) reflection was carried out for all annealed samples.

3. Results and discussion

To evaluate the N concentration in the GaAsN grown layer on a GaAs(001) substrate, it is required to know the lattice parameters of the epilayer perpendicular (a_{\perp}) and parallel (a_{\parallel}) to the GaAs(001) surface, which are generally calculated from a symmetric (004) and an asymmetric (115) HRXRD, respectively. Fig. 1a shows a (004) HRXRD $2\theta/\omega$ scan of the GaAsN layer on GaAs(0.01) substrate. From the separation between the GaAs and GaAsN reflection peaks, the a_{\perp} was determined to be 5.544 Å. In addition, Pendellösung fringes are clearly visible due to a finite thickness and high structural quality of the grown layer. It is also shown that the spacing between the nearest fringes corresponds to a layer thickness of 200 nm. Fig. 1b shows a reciprocal space map of the (115) reflection. It is clearly seen that the GaAsN layer is coherently strained and exhibits a good epitaxial quality. By using both the (0.04) $2\theta/\omega$ scan and the (1.15) reciprocal space mapping measurements [7], the in-plane lattice parameter, a_{\parallel} , was determined to be 5.653 Å. Note that this value is in an excellent agreement with the lattice constant of GaAs. Thus, the N concentration, which can be estimated from the lattice parameters using Vegard's law [7], was determined to be 5.1%. HRXRD results demonstrate that a high epitaxial quality and coherently strained GaAsN layer with N content as high as 5.1% was successfully grown. However, it is found that the lumines-

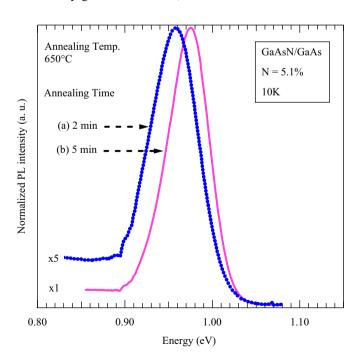


Fig. 2. Low-temperature (10 K) PL spectra of the annealed GaAs $_{0.949}$ N $_{0.051}$ layers at 650 °C for different annealing times: (a) 2 min and (b) 5 min.

Download English Version:

https://daneshyari.com/en/article/1795893

Download Persian Version:

https://daneshyari.com/article/1795893

<u>Daneshyari.com</u>