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Abstract

The influence of antisite defects in InN is analyzed theoretically using a Linear Combination of Atomic Orbitals approach. The

procedure used is validated by confirming the band gaps of common binary alloy semiconductor materials. InN with NIn and InN antisite

defects are then analyzed and it is found that in the case of InN:NIn, the excess nitrogen acts as a donor species with its level resident in

the conduction band. For InN:InN, it is shown that when there is a significant density of the excess indium present as the antisite defect,

tunnel optical absorption should occur in the infrared at 0.2 eV.
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1. Introduction

The relatively recent observation of 0.7 eV photolumi-
nescence for InN and of absorption features near this
energy have been the subject of a number of recent papers
[1–3]. It has been proposed that the low-energy features
indicate a 0.7 eV band gap. However, the material has
frequently been observed, and over a long period of time,
to have an optical absorption band gap close to 1.9 eV. The
discrepancy is not presently understood.

Proponents of the narrower gap have invoked a massive
Moss–Burstein shift and/or the presence of large quantities
of oxygen impurity to explain the wider gap. However, the
former provides no explanation of the wide gap in a
material of low carrier concentration, while an elementary
consideration of Vegard’s law indicates that oxygen levels
in the higher band gap material are insufficient to account
for the difference [4]. On the other hand, there are plausible
allocations of the strong 0.7 eV optical feature to point-
defect-related energy banding at about one-third band gap.

The consequential sample inhomogeneity offers a strong
possible explanation for the formation of this band.
Growth conditions are known not to favor stoichio-

metric InN. The equilibrium phase diagram does not show
a cusped solidus close to the stoichiometric ratio as is
commonly found in both III–V and II–VI inter-metallic
binary semiconductors. In practice, InN growth always
uses kinetic techniques in which the energetics do not
inhibit antisite substitutional defects. We here report an
investigation into the possibility that the 0.7 eV features
arise as artifacts associated with very high densities of such
defects. The approach, appropriate to such a configuration,
is to treat InN as an alloy of the ideal stoichiometric
compound and a ‘‘defect binary’’ consisting of InN
containing both single In substitutions on N sites and
single N substitutions on In sites.
The theoretical approach chosen describes interactions

between atomic orbitals belonging to the nearest neighbor-
ing atoms and is based on the Hartree–Fock model of
electron interactions. The one-electron Schrödinger equa-
tion describing the interaction between neighboring orbi-
tals is derived and forms the basis for calculations of the
energy terms of the valence electrons of the atoms
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belonging to the solid state. These energy terms are then
used for calculation of the linear combination of atomic
orbitals (LCAO) electron band structure of selected binary
semiconductors and in particular is validated through
calculation of the energy band gaps of InP, InAs, InSb,
GaN and AlN which are experimentally non-controversial.
The method is then applied to the calculation of the energy
band gap of InN, both in its stoichiometric form and as the
non-stoichiometric compound having high densities of
single antisite substitutions. The optical properties of the
non-stoichiometric InN are discussed on the basis of the
calculated electron band structure.

2. Determination of the valence electron energies of atoms

belonging to a tetrahedral cell in the solid state

A system containing two neighboring atoms in a
tetrahedral cell connected by an ionic–covalent bond is
investigated in the region where the electronic density has a
high variation. The ionic–covalent bond is based on
two hybrid orbitals belonging to the neighboring atoms
engaged in the bond. Each hybrid orbital contains atomic
orbitals defined for the isolated atom. In this paper, the
hybrid orbital and its interactions are constructed under
the following considerations:

(i) Only the atomic orbitals having radii greater than half
of the inter-atomic distance and occupied by electrons
participate in the formation of the hybrid orbital.
These atomic orbitals are called valence atomic
orbitals.

(ii) The electronic charge of an atomic orbital participat-
ing in the hybrid orbital is attracted by the electronic
charge participating in the hybrid orbital of the other
atom engaged in the bond.

(iii) The positive charges of the nuclei are equal to their
valences.

The corresponding Schrödinger equation for the electron
function of the hybrid orbital ci(r) ði ¼ a; cÞ is derived on
the basis of the Hartree–Fock method, and conditions (i),
(ii) and (iii) given above. It is
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where UiðrÞ is the Coulomb potential of the ion occupying
the i site, ecor the correlation energy, and e0i the electron
energy term of the hybrid orbital engaged in the bond. The
first integral is connected with the Coulomb repulsive
potential of two electrons on the same ion site, the second
integral is the corresponding potential of one electron on

each site, and the third integral is the exchange potential.
All of these integrals are two-center Coulomb integrals.
The solution of Eq. (1) is connected with determination of
the values of the following two-center Coulomb integrals:
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The main disadvantage of the energies represented in
Eqs. (3) and (4) is that they do not take account of the
overlap matrix element S. Considering S, we find

Jij ¼ J 0ijð1� 2S2Þ=ð1� S2Þ, (5)

Kij ¼ K 0ijð1� 2S2Þ=ð1� S2Þ. (6)

The first, second and the third terms of Eq. (1) determine
the Hamiltonian of the isolated atom i (i ¼ a; c). The terms
corresponding to Eqs. (5) and (6) are connected with the
influence of valence electrons of the neighboring atom j

(j ¼ c; a). Using Ref. [5], we find the numerical value of J 0ij
to be given by

J 0ij�ðV a þ VcÞ=2. (7)

The influence of the correlation energy on the energy e0i is
represented by the term

ecor

Z
ciðrÞ

�ciðrÞdr ¼ ecorN, (8)

where N is the number of the covalent electrons in the
region of interaction of two hybrid orbitals belonging to
neighboring atoms.

3. Energy band gaps of InN, InP, InAs, InSb, GaN and AlN

The correlation energy ecor is determined by using Ref.
[5] and the matrix element V4 is determined as follows.
According to Ref. [6], V4 appears due to the interaction
between two hybrid orbitals belonging to neighboring
atoms. This matrix element is responsible [7] for the curves
of the sub-bands corresponding to the top of the valence
band and to the bottom of the conduction band. For the
purposes of this paper, we consider V4 not to contain terms
resulting from the interaction between antibonding and
bonding states, i.e., it is valid to write

V4 ¼ V4; bond þ V 4; a-bond, (9)

where V4,bond and V4,bond correspond to interactions
between the bonding and antibonding states, respectively.
The determination of V4 is made for InN, InP, InAs, InSb,
GaN and AlN according to the following scheme:

(i) values of V4,bond are taken from Ref. [6];
(ii) values of V4,a-bond are calculated according to the rule
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