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Theory predicts that ionic currents through electrochemical cells at nanometer scale can exceed the diffusion
limitation due to an expansion of the interfacial electrostatic double layer. Corresponding voltammetry
experiments revealed a clear absence of a plateau for the current, which cannot be described by the classical
Butler–Volmer approach using realistic values for the transfer coefficient. We show that extending the classical
approach by considering the double layer structure using the Frumkin correction leads to an accurate description
of the anomalous experimental data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The description of charge transfer at nanometer sized electrodes
is among the most important and puzzling problems in electro-
chemistry [1–6]. For large-scale electrochemical cells one generally
assumes a negligible space charge density in the bulk electrolyte
(electro-neutrality) combined with the phenomenological Butler–
Volmer equation for charge transfer [7–10]. However, this approach is
inappropriate for cells where the electrode spacing is small relative to
the thickness of the interfacial double layers (DLs) [7–11]. In this
communication we study a planar electrochemical cell with nano-
meter electrode spacing where the DLs might significantly influence
the shape of voltammograms [2,6–15]. Therefore we employ the
Poisson–Nernst–Planck (PNP) theory for ion transport coupled to the
generalized Frumkin–Butler–Volmer (gFBV) equation for charge trans-
fer, which transparently account for any non-zero space charge density
[7–11].

To support this theory we re-analyze the data for the electrochem-
ical cells reported in Refs. [4,5]. Their cells consist of a planar cavitywith
50–70 nmelectrode spacing (Fig. 1a), whichwasfilledwith either (i) an
aqueous solution containing ferrocenedimethanol, Fc(MeOH)2, in an
excess of KCl or (ii) Fc(MeOH)2 dissolved in acetonitrile, ACN, with
tetrabutylammonium hexafluorophosphate, TBAPF6, as the supporting
electrolyte. In both cases the ferrocene cations were reduced at the
negatively biased electrode to a neutral species that shuttled to the

opposite electrode where they were oxidized again. Voltammograms
were obtained by keeping one electrode at the reducing potential while
sweeping the potential of the opposite electrode. Herewe show that the
anomalous voltammograms for ACN can be due toDL-expansion at high
electrode potentials.

2. Theory

A one-dimensional systemwith spatial coordinate X is used (i.e. the
electrode area is assumed infinitely large compared to its spacing).
Furthermore, we assume that the charge transfer proceeds at a pre-
defined reaction plane adjacent to the electrodes (Fig. 1b). Therefore X
runs from the bottom reaction plane at X=0 to the top plane at X=L.
The systemcontains four species, namely; (i)monovalent oxidantswith
concentration Cox, (ii) neutral reductants, Cre, (iii) inert cations, Cc, and
(iv) inert anions, Ca, with initially all reactive species in the uncharged
(reduced) state. Finally, we assume that all species have the same
diffusion coefficient, D. Below we adopt the common dimensionless
parameters [7–11]. First, we scale the coordinate to the electrode
spacing, L, i.e. x=X/L. Next, we scale the electrical potential V in volts to
the thermal voltage, ϕ= f V, where f=F/(RT), and T is the temperature.
Furthermore,we scale allfluxes, Ji, to theflux of oxidants at the diffusion
limitation, Jlim. To determine this limitation we consider an electro-
neutral bulk electrolyte where in the presence of an excess of inert
electrolyte the electrical field, and thus ion migration, is completely
suppressed [10,16]. This results in linear concentration profiles for
the reactive species across the bulk, which due to mass conservation,
i.e. ∫

L
(Cox+Cre)dx=Cre

o L , leads to Jlim=D∂Ci/∂X=D Cre
o /L, where o

denotes the initial concentrations [17]. Finally, we scale all concentra-
tions according to ci=Ci/Creo .
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Using these dimensionless parameters the steady-state fluxes of
the inert cat- and anions according to the PNP theory become,

∂xci þ zici∂xϕ ¼ 0; ð1Þ

where zi is the valence of the ions. In addition, the flux of oxidants and
reductants become,

∂xcox þ cox∂xϕ ¼ −jf ð2aÞ

∂xcre ¼ jf ; ð2bÞ

with jf as the charge transfer rate at the electrodes according to the
dimensionless gFBV equation [7–11],

�jf ¼ kRcox exp −αΔϕS½ �−kOcre exp 1−αð ÞΔϕS½ �; ð3Þ

where the±-sign refers to the positive value for x=1 and the negative
value for x=0, ki are the rate constants,α is the transfer coefficient, and
ΔϕS is the potential drop across the charge free Stern layer (Fig. 1b),
which follows from Poisson's law, ε∂X

2V=−e∑ziCi, where ε is the
permittivity of the electrolyte. To rewrite Poisson's law into dimen-

sionless parameters we use the Debye length, λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εRT=2F2C∞

q
,

whereC∞ ¼ 1
2∑zi

2Co
i , which is the ionic strength of the electrolyte, and

equals �=λD/L in dimensionless units. Hence;

−2γ�2∂2xϕ ¼ ρ ¼ ∑
i
zici; ð4Þ

where γ=Cc
o/Creo , ρ is the dimensionless space charge density, and i runs

over all ionic species. Consequently, Δϕs=±�δ ∂xϕ, with δ=λS/λD,
which is the Stern layer thickness scaled to λD. In Eq. (3) α theoretically
equals 1/2, as assumed in this work, when the reorganization energy of
the reaction is infinite [18–22], which we estimate for the outer-sphere
electron transfer of Fc(MeOH)2 by λos=e2(8πr)−1(εop−1−εs−1), where

εop and εs are the optical and static permittivity, and r is the radius of

the reactant [22], while deviations can be determined from α ¼
1
2

1þ ΔϕS kBT=λos½ � [18–21].
Next we define the boundary conditions. First consider the

conservation of charge in the metal phase of the electrodes,
ae(σ0+σ1)+Arefσref, av=0, where ae is the electrode area, σ0 and σ1

are the surface charge densities of the electrodes at x=0 and x=1, and
Aref and σref,av are the area and average surface charge density of the
reference electrode, respectively (for dimensional units multiply σi

with Cre
o FL). The potential of the bottom electrode is kept constant with

respect to the reference electrode, so that σref,av−σ0=q, where q is a
constant, and σ0=−(aeσ1+Arefq)/(ae+Aref). For Aref=0 we now
retain the two electrode case where σ0=−σ1, while for our situation
(Aref≫ae), we have σ0≈−q and σref,av≈0, so that any variation in
charge of the top electrode is almost completely countered by the
reference electrode, which retains a negligible surface charge density
due to its vast area. Consequently, themixed boundary condition for the
bottom electrode becomes, ∂xϕ=−q/(2� 2γ), and ϕ=-q δ/(2�γ),
where the latter equation represents a zero electrical potential in
the metal phase. At the reaction plane of the top electrode we assign,
∂ xϕ=−σ1/(2 � 2γ). Consequently, the cell potential becomes
ϕcell=ϕ1−σ1 δ/(2 �γ).

In addition to the boundary conditions we require relations for the

conservation of species, i.e. ae∫
L

0
CidXþV resCi;res þ ArefΓ i ¼ aeLþ V resð ÞC0

i ,

where Γi is the amount of adsorbed ions at the reference electrode, Vres
is the volume of the reservoir surrounding the nano-cavity indicated
by subscript res. Here Vres is much larger than that of the nano-cavity, so
that Ci,res≈Ci

0, while for Γi we can use the linear Debye–Hückel
approximation, in which the charge density is composed of an equal
surplus and deficit of counter- and co-ions, since σref,av remains small.
Relating Γ i ¼ 1

2 ziσ ref ;avC
o
reL to the electrode area and using ae(σ0+σ1)=

−Arefσref,av gives,

∫
1

0

cadx ¼ γ þ 1
2

∫
1

0

coxdx−σ1 þ q

 !
;

∫
1

0

ccdx ¼ γ−1
2

∫
1

0

coxdx−σ1 þ q

 !
;

∫
1

0

cox þ creð Þdx ¼ 1;

ð5Þ

for conservation of species in the system, where the inert cat- and anions
equally counter any increase in charged species due to the transfer of Cre
into Cox.

Finally we derive an equation for voltammograms in case of
(i) linear concentration profiles, (ii) a large excess of inert electrolyte,
and (iii) infinitesimally thin DLs (�→0), so that here the Poisson–
Boltzmann distribution is valid, and we can distinguish an electro-
neutral bulk electrolyte [7–11]. For these assumptions we find from
Eqs. (1)–(5) that

j ¼ kOkR B0A1−B1A0ð Þ
kRA0 þ kRB0 þ kRA1 þ kOB1ð Þ kRA0 þ kOB0 þ 1ð Þ ; ð6Þ

where Ai ¼ exp −1
2
ΔϕS−ΔϕDL

� �
, and Bi ¼ exp

1
2
ΔϕS

� �
, with ΔϕDL

the potential across the DL, and subscript 0 and 1 indicate the
electrode at x=0 and x=1, respectively. Note that for �→0 ΔϕS ¼
δ sinh

1
2
ΔϕDL

� �
[7–11]. Additionally we can obtain analytical relations

for two cases, namely (i) the Helmholtz limit where the potential
drop from the metal phase of the electrode to the point of zero charge
in the electrolyte is completely across the Stern layer, i.e. δ=∞, and

a)

b)

Fig. 1. Schematics of (a) the experimental setup of Refs. [4,5], and (b) a two-electrode
system where we can distinguish a bulk region that is sandwiched between the double
layers (i.e. diffuse plus Stern layer), which are found adjacent to the metal phases.
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