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a b s t r a c t

We perform Monte Carlo simulations to analyze the magnetic properties of a mixed Ising model, where
spins S that can take 5 values , ± ±0, 1, 2, alternate on a square lattice with spins s that can take 6 values,
± ± ±5/2, 3/2, 1/2. The Hamiltonian of the model includes an antiferromagnetic interaction between the
S and s spins, nearest-neighbors on the lattice, a ferromagnetic interaction between the S spins, next-
nearest neighbors on the lattice, and a crystal field. We found that the system presents compensation
temperatures in a wide range of the parameters. At the compensation temperature the total magneti-
zation is zero but, contrary to what happens at the critical temperature, the system remains ordered.
These temperatures have important technological applications, particularly in the field of thermo-
magnetical recording. We calculate the finite-temperature phase diagram of the model. We found that
the presence of the compensation temperature is strongly dependent on the next-nearest neighbor in-
teraction term between the S spins, while its value can be calibrated by changing the crystal field.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mixed Ising models can be a good starting point to understand
some aspects of the thermo-magnetic behavior of complex struc-
tures such as molecular magnetic materials. Mixed systems of
higher spins located on alternating sites of a lattice have a rich
critical behavior that can include interesting magnetic properties,
such as first order phase transitions [1], giant magnetoresistance
[2], enhanced surface magnetic moment [3], surface magnetic
anisotropy [4], re-entrant behavior [5,6], hysteresis loops [7,8] and
dynamic compensation behavior [5,9,10], among others. At the
compensation point, Tcomp, the total magnetization vanishes but
the system has not yet reached the critical temperature, Tc. This
effect is due to the different temperature dependences of the
sublattices magnetizations that are antiferromagnetically coupled.
At Tcomp, the coercivity of the material depends strongly on the
temperature [11–14], and only a small driving field is required to
reverse the sign of the magnetization of a locally heated magnetic
domain by using a focused laser beam [15–18]. This behavior has
applications in the process of writing and erasing in high density

magneto-optical devices [19–22]. Mixed Ising systems have been
successfully used to explain the qualitative behavior of the com-
pensation phenomenon and other properties of molecular mate-
rials characterized by the mixing of high spin compounds [23–26].

Mixed Ising systems also play a role in the understanding of
nanomagnetic structures [27,28]. Nanotubes [29–31], nanorods [32–
34], nanofilms [35–37], nanowires [38,39], nanoparticles [40,41],
and nanobelts [42,43] are magnetic nanomaterials that can be
characterized magnetically through mixed configurations of spins,
and whose properties are quite different than those of the bulk
materials [44,45]. These structures have applications in such diverse
fields as information storage devices [46,?], permanent magnets
[47], environmental remediation [48] and biomedical applications
[49]. Some nanomaterials have been experimentally synthesized
and their magnetic behavior has been studied, as is the case of
magnetic nanowires Co–Cu [50], −Ga Cu N1 x x [51] and Fe3O4 [52]. For
the latter system, Chern et al. reported experimental measurements
of compensation temperatures [53]. Multilayer systems, such as
magnetic thin films, can be adequately simulated by layered mixed
spin Ising systems [54,55]. Multilayer spin systems, such as mag-
netic thin films, have been studied experimentally, presenting in-
teresting properties such as surface magnetoelastic coupling, and
surface magnetic anisotropy [4,56,57].
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To describe complex molecular magnetic materials, several
mixed Ising models have been proposed, with lattices of different
topologies, diverse couplings, and several approximation methods.
Previous work includes spin configurations in square lattices with
next and next-nearest-neighbor interactions, crystalline, and ex-
ternal fields [58–62]. In this work, we analyze an Ising ferrimagnet
with spins S¼2 alternating with spins σ = 5/2 on a square lattice.
Besides the antiferromagnetic coupling between the S and the s
spins, we include a ferromagnetic coupling between spins of type
S, next-nearest-neighbors on the lattice, and a crystal field. Pre-
vious studies in different spin systems, indicate that compensation
temperatures are possible when ferromagnetic exchange interac-
tions between next-nearest-neighbors are included [63–67,58].

The mixed spin-2 and spin-5/2 Ising ferrimagnet has been used
as the prototype of certain molecular-based magnetic materials.
For example, the model properly represents the compound
AFeIIFeIII(C2O4)3, = ( − )+HA N n Cn n2 1 4, n¼3–5, where FeII¼2 and
FeIII¼5/2 [68]. This model has also proved to be relevant to study a
rich variety of thermomagnetic phenomena, such as first-order
phase transitions reported on Bethe and honeycomb lattices, and
simulated through exact recursion relations and Monte Carlo
methods [1,69,70]; tricritic behavior in square, Bethe and honey-
comb lattices [60,69,70]. Compensation temperatures were re-
ported when the model was simulated on Bethe, honeycomb and
layered honeycomb lattices [6,23,66,71,72]. The existence of hys-
teresis loops has been reported when the system is under the ef-
fect of oscillating and longitudinal magnetic fields, and different
anisotropies [10,70]. This model has also been used to study the
effects of interlayer coupling, and the crystal field, on the internal
energy, the specific heat, and the magnetic susceptibility [73]. The
ground-state diagram of the system is quite complex, and has been
calculated for different combinations of interactions [74].

The outline of this work is as follows. In section 2 we define the
model and present the Monte Carlo method. The effects of the
next-nearest-neighbor exchange interaction and the single-ion
anisotropy on the phase diagram are discussed in section 3. Finally,
in section 4 we present our conclusions.

2. Model and monte carlo simulation

The system is a mixed Ising ferrimagnet were spins S and s are
located on alternating sites of a square lattice of size ×L L with
L¼80. The Hamiltonian of the system is

∑ ∑ ∑ ∑σ σ= − − − ( ) − ( )
( )〈 〉 〉
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Where = ± ±S 2, 1, 0
A

and σ = ± ± ±5/2, 3/2, 1/2
B

are the
spins on the sites of the interpenetrating sublattices A and B, re-
spectively. J1 is the nearest-neighbors exchange parameter, J2 is the
next nearest-neighbor exchange parameter, and D is a crystal field,
responsible of the anisotropy of the system. The first sum is per-
formed over all pairs of nearest-neighbor spins, i.e. between spins
S and s. The second sum is performed over all pairs of next
nearest-neighbors type S spins. The sums over i and j are per-
formed over all sites of the sublattices A and B, respectively. We
choose an antiferromagnetic coupling between nearest neighbors,

<J 01 , and a ferromagnetic coupling between next nearest-
neighbors, >J 02 , and take periodic boundary conditions. All the
parameters in the Hamiltonian are in units of energy. Throughout
the paper we use the notation: ′ = | |D D J/ 1 , ′ = | |J J J/2 2 1 and

′ = | |k T k T J/B B 1 , such that ′ ′D J, 2 and ′k TB , are dimensionless. kB is the

Bolzmann constant. Here for simplicity we assume that ′D re-
presents an average crystal field felt by the entire lattice. The effect
of different crystal fields in this model, in the absence of the

interaction J2 has been analyzed in [75].
The simulation of the model is carried out by a heat bath Monte

Carlo method. The data are obtained with = ×M 5 10
4
Monte Carlo

Steps per Site (MCSS), after discarding the first 104 steps per site to
reach equilibrium. Errors are estimated using the method of
blocks, where the sample is divided into b blocks, such that each
block has =M M b/b measurements. When Mb is larger than the
correlation length, the averages of the blocks can be considered
statistically independent. Thus, errors can be calculated as the
standard deviation of the averages of the blocks [76]. In this work
b¼10.

The magnetization per site of the sublattices, MA,MB, and the
total magnetization per spin, MT, are defined as:
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An efficient way to locate the compensation temperatures,
Tcomp, is to find the intersection point of the absolute values of the
sublattice magnetizations [63], i.e.

| ( )| = | ( )| ( )M T M T 3A comp B comp

with the conditions:

( ( )) = − ( ( )) ( )sign M T sign M T , 4A comp B comp

< ( )T T 5comp c

where Tc is the critical temperature of the system at which both
the total and sublattice magnetizations go to zero. These relations
assure that at Tcomp the total magnetization is zero due to the
cancellation of the magnetizations of the sublattices.

Defining β = k T1/ B , we calculate the specific heat per site C, and
the total magnetic susceptibility per spin χT , as:
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where 〈 〉H represents the internal energy of the system.

3. Results and discussion

3.1. Ground-state phase diagram

The ground-state diagram for this model has already been
published by some of us [74]. In order to understand the behavior
of the system as →T 0 we reproduce it in Fig. 1. Due to the ex-
istence of the J2 and D terms in addition to the J1 interaction, the
diagram has a complex structure. At finite temperature there can
be tricritical points and first order phase transitions near the co-
existence lines between different ground states [77,1,67,78]. The
ground-state phase diagram of this model has ten different re-
gions. The spins configurations in each region and the equations of
the coexistence lines can be found in ref [74].

3.2. ′J2 effects

In order to investigate the effect of the exchange interaction, ′J2
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