ELSEVIER

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

A first principles study of Nd doped cubic LaAlO₃ perovskite: mBJ+U study

Sandeep a,*, D.P. Rai b, A. Shankar C, M.P. Ghimire d, R. Khenata e, R.K. Thapa a

- ^a Dept. of Physics, Mizoram University, Aizawl 796004, India
- ^b Dept. of Physics, Pachhunga University College, Aizawl, Mizoram 796001, India
- ^c Department of Physics, University of North Bengal, Darjeeling 734013, India
- ^d Condensed Matter Physics Research Center, Butwal-13, Rupandehi, Lumbini, Nepal
- e Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara, Algerie

ARTICLE INFO

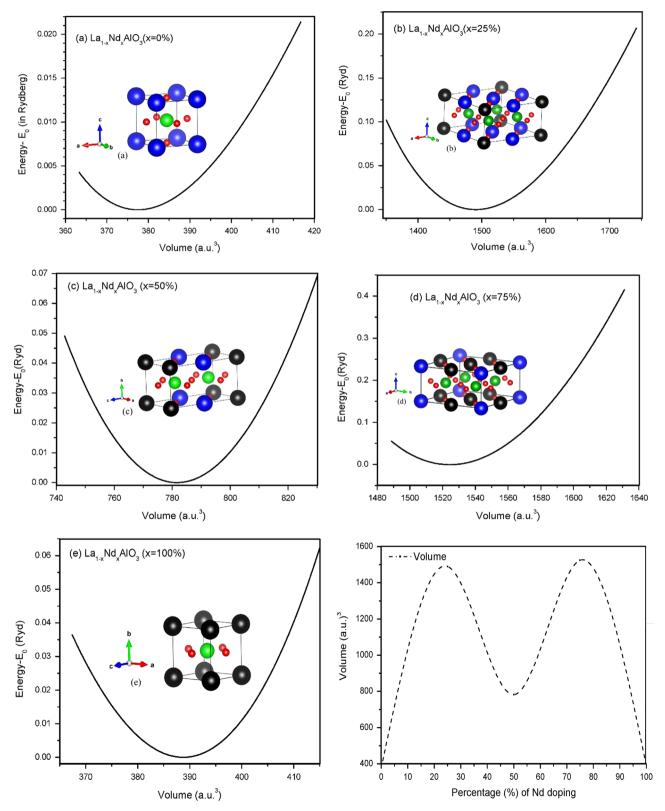
Article history:
Received 23 December 2015
Received in revised form
21 May 2016
Accepted 25 May 2016
Available online 26 May 2016

Keywords: DFT mBJ+U DOS Band-gap Magnetic properties

ABSTRACT

The structural, electronic and magnetic properties of Nd-doped Rare earth aluminate, $La_{1-x}Nd_xAlO_3$ (x=0–100%) are studied using the full potential linearized augmented plane-wave (FP-LAPW) method within the density functional theory. The effects of Nd substitution in LaAlO₃ are studied using super-cell calculations. The electronic structures were computed using modified Beck Johnson (mBJ) potential based approximation with the inclusion of Coulomb energy (U) for Nd-4f state electrons. The $La_{1-x}Nd_x$ AlO₃ may possess half metallic behavior on Nd doping with finite density of states at E_F . The direct and indirect band gaps were studied as a function of Nd concentration in LaAlO₃. The calculated magnetic moments in $La_{1-x}Nd_xAlO_3$ were found to arise mainly from the Nd-4f state electrons. A probable half-metallic nature is suggested for these systems with supportive integral magnetic moments and high spin polarized electronic structures in these doped cases at E_F . The controlled decrease in band gap with increase in concentration of Nd doping is a suitable technique for harnessing useful spintronic and magnetic devices.

 $\ensuremath{\text{@}}$ 2016 Elsevier B.V. All rights reserved.


1. Introduction

Perovskite compounds ABX₃ have been studied a lot in recent years due to their important applications [1,2] ranging from ferroelectric, piezoelectric [3], high electronic and ionic conductivity, diverse magnetism, colossal magnetoresistive effects [4], paraelectricity, superconductivity and aslo as topological insulators [5]. Single crystalline substrates of RAIO₃ such as LaAIO₃, and YAIO₃ are commonly used for the epitaxy of thin films of high temperature super conductor (HTSC), magneto resistive materials, and GaN films [6]. The structural, electronic, transport, magnetic and specific heat in 4d- perovskites were studied with doping [7]. Yb-2p and V-4p as dopants in YAlO3 were suggested for tunable solidstate lasers [8,9]. Dielectric resonators and substrates for microwave components having high quality factors were also studied through dielectric permittivity studies [10-12]. The perovskite compounds in the field of electronics [13], optics [14] and energy conversion applications [15] have remained popular studies among all technologically important compounds. Due to its preferable dielectric nature and suitable thermal properties LaAlO₃ has been suggested for replacing silicon dioxide (SiO₂) as superconductive substrate, superconducting microwave devices and the high k gate oxide [16]. At room temperature LaAlO₃ was reported to be in rhombohedral structure with R3c space group [17]. Nakatsuka et al. have reported ideal Pm3m cubic perovskite structure at room temperature [18]. The multiferroic applications of LaAlO₃ on doping with transition metals along with its use as host material makes it important to be explored extensively [14]. Limited numbers of studies were observed till date on the ferromagnetic and optical properties of transition metal doped LaAlO₃ [19–21]. Change in band gaps in β -SiC with doping of N-atom for C were studied by Hong-Sheng et al. to report substantial modification in band gaps [22]. Additional absorption peaks in KMgF₃ were explained using doping studies by Fang et al. [23]. The weakening of magnetic moment and magnetic stabilized energy in defective graphene with hydrogen chemisorbed single-atom vacancy (H-GSV) were analyzed by Shu-Lai et al. [24]. The decrease in conductivity of ZnO was predicted and compared with experimental results by Hou Qing-Yu et al. [25] using pseudopotential method. Optical properties of TiO doped with two atoms were studied with by Qing et al. [26]. A thermodynamic formalism based on ab initio electronic structure calculations were applied to Ba_cSr_(1-c)TiO₃ perovskite solid solutions to predict that the spinodal decomposition could serve as the universal mechanism of

^{*} Corresponding author. E-mail address: sndp.chettri@gmail.com (Sandeep).

the nanocluster formation [27]. Further, Shi-Bin *et al.* studied the effect of polarization doping of AlGaN and predicted it as more efficient doping technique [28]. Zylberberg and Zuo-Guang [29] have studied the dielectric properties of Bismuth-doped LaAlO₃ to correlate the higher dielectric properties using high polarizability

of ${\rm Bi}^{3+}$ ion with alone electron pair. Namjoo *et al.* [30] have studied the structural electronic and optical properties of InAs, InSb, and their ternary alloys ${\rm InAs_xSb_{1-x}}$ (x=0.25, 0.5, 0.75) within density functional theory using the modifed Becke-Johnson exchange-correlation functional (mBJ-LDA) [31], to report the

Fig. 1. Crystal structure and Energy vs Volume curve for (a) $La_{1-x}Nd_xAlO_3$ (where x=0% or (0/8) (b) $La_{1-x}Nd_xAlO_3$ (where x=25% or (2/8), (c) $La_{1-x}Nd_xAlO_3$ (where x=50% or (4/8)50%, (d) $La_{1-x}Nd_xAlO_3$ (where x=75% or (6/8) and (e) $La_{1-x}Nd_xAlO_3$ (where x=100% or (8/8) and (f) Plot of percentage of Nd doping vs volume for $La_{1-x}Nd_xAlO_3$ Blue=La, Black=Nd, Green=Al and Red=O. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1797793

Download Persian Version:

https://daneshyari.com/article/1797793

Daneshyari.com