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a b s t r a c t

A detailed analytical and numerical analysis of the skyrmion core size dependence as a function of the
uniaxial perpendicular anisotropy and radius in magnetic nanodots has been carried out. Results from
micromagnetic calculations show a non-monotonic behavior between the skyrmion core size and the
uniaxial perpendicular anisotropy. The increment of the radius reduces the skyrmion core size at con-
stant uniaxial perpendicular anisotropy. Thus, these results can be used for the control of the core sizes in
magnetic artificial skyrmion crystals or spintronic devices that need to use a skyrmion configuration at
room temperature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the study of the magnetic skyrmion config-
uration in structures such as disks, films, etc. has grown sig-
nificantly due to the potential applications in magnetic storage
devices of high density, spintronics, etc. [1–7]. A magnetic sky-
rmion configuration on a disk is a two-dimensional stereographic
projection of a sphere with magnetization pointing outside in the
form of a hedgehog [6]. There are two approaches from which we
can obtain this magnetic configuration of a disk: the first one is to
enter a Dzyaloshinskii–Moriya interaction due to the strong spin–
orbit coupling between two materials [1,8] or the second is to
include a uniaxial magnetic anisotropy perpendicular to the plane
of the dot [9–11]. Therefore, there are two types of skyrmion
configurations: the Néel-type and the Bloch-type skyrmions. In
the Néel skyrmion configuration, the magnetic profile has a
magnetic component different from zero in the radial direction.
On the other hand, the Bloch skyrmion configuration does not
have magnetic component in the radial direction. In addition the
Bloch skyrmion can be stabilized by a uniaxial magnetic aniso-
tropy perpendicular to the plane of the dot [9,11,12], but the Néel
skyrmion configuration is necessary to include Dzyaloshinskii–
Moriya interaction for the stabilization of this magnetic config-
uration [4,8].

The study of a skyrmion configuration in nanodisks with per-
pendicular anisotropy can be important since it could improve the
artificial two-dimensional skyrmion crystal created by a

combination of perpendicularly magnetized film, of the order of
400 kJ/m3, and arrays of magnetic vortices that are geometrically
confined within a nanodisk [13]. The magnetic uniaxial perpen-
dicular anisotropy in the Co nanodot is added by varying the
thickness of the Co layer in a Co/Pt stack [10]. Novais et al. ob-
served that there are dots with perpendicular anisotropy of the
order of 375 kJ/m3 with core vortex radius and magnetization at
the disk rim pointing down [9]. Guslienko also observed that it is
possible to obtain a skyrmion configuration in a nanodisk with
perpendicular anisotropy [11], by using the skyrmion ansatz of the
solution of the nonlinear sigma model [14]. With that model, they
observed that the skyrmion core size only decreases when the
uniaxial perpendicular anisotropy of the dot increases.

In the present paper, we focus our attention on the skyrmion
core size dependence as a function of the perpendicular anisotropy
and radius in magnetic nanodots. Based on the micromagnetic
calculation, we have carried out numerical calculations, which
have identified a non-monotonic behavior between the core size
radius and the perpendicular anisotropy. Also we observe that
there is a dependence of the core size of the skyrmion config-
uration with the radius. This paper is organized as follows: in
Section 2 we describe the approach we adopted in the present
work, in Section 3 we present results and discussion, and in Sec-
tion 4 conclusions are presented.

2. Theory

Our starting point is an ideal magnetic skyrmion configuration
in a magnetic dot with radius R and height H. The magnetic dot
has a magnetic uniaxial anisotropy perpendicular to the plane of
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the dot, >K 0a , see Fig. 1(a). With the purpose to study this
magnetic configuration, we consider a simplified description of
the magnetic system in which the discrete distribution of the
magnetic moments is replaced by a continuous one, defined by a

function ( )→ →M r such that ( )δ
→ →M r v gives the total magnetic mo-

ment within the element of volume δv centered at →r . For the
skyrmion configuration, the magnetization can be written by

( ) ρ ϕ ρ
→ → = ( ) ^ + ( ) ^

ϕM r M m M m zs s z , where Ms is the saturation mag-

netization of the dot and the magnetic profile, ρ( )mz , is given by
the ansatz obtained from Novais et al. [9]:
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where b is the radius of the magnetic core of the skyrmion and c is
the end-width of the magnetic skyrmion configuration, see Fig. 1
(b). The total energy for the magnetic skyrmion configuration, ES,
is given by the sum of the exchange, magnetostatic and anisotropy
contributions, which now are taken from the continuum theory of
ferromagnetism [15]. The exchange contribution for the skyrmion
configuration, ES EX, , is given by:

∫( ) π ρ ρ ρ= − + ( ) ( )−
E E b R c H HA f d, , 2 2S EX V EX

R c

R

, ,

where ( − )E b R c H, ,V EX, is the magnetic exchange energy of a
vortex configuration for a magnetic dot with radius −R c , height
H, and magnetic vortex core radius equal b. ( − )E b R c H, ,V EX, is
equal to [16]:
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where A is the stiffness constant and ( )z is the harmonic number
function of the complex variable z given by Euler's integral for-
mula:
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The function ρ( )f in Eq. (2) is:
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where ζ ρ ρ( ) = ( − )R c/ . The magnetostatic interaction for the

skyrmion configuration is ∫μ δ= ( )
→

(→)·∇
→

(→)E M r U r v/2S M, 0 , where

(→)U r is the magnetostatic potential [15]. If we use Eq. (1) for
→
M , we

observe that the magnetostatic potential does not have volumetric

charge (∇
→

·
→

(→) =M r 0), then ES M, is given by:

∫ ( ) ( )πμ= + ( − ) ( )
∞
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where ( )F q b,1 and ( )F q c R, ,2 are:
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From Eq. (6), it is possible to observe that if ( ) =F q c R, , 02 (for
instance →c 0), then =→ E ElimF S M V M0 , ,2 , where EV M, is the mag-
netostatic energy for a magnetic vortex configuration with radius
R, height H, and magnetic vortex core radius equal b.

For the anisotropy energy we have ∫ ρ= − ( )E K m dvA a z
2 . In our

case, the anisotropy contribution for the skyrmion configuration,
ES A, , is equal to:

π= − − +
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where the first term in Eq. (9) corresponds to the anisotropy term
of a magnetic vortex configuration, ( )E b R H, ,V A, , with radius R,
height H, and magnetic vortex core radius equal b
( π( ) = −E b R H K Hb, , /9V A a,

2 ).
Finally the total energy for the magnetic skyrmion configura-

tion is equal to:

= + + ( )E E E E 10S S EX S M S A, , ,

If we want to have some physical interpretation of the sky-
rmion state, we need to compare the skyrmion energy with the
energies of the other three magnetic states that could have a
magnetic dot. These three configurations are the vortex, the in-
plane and the out-plane magnetic configurations. Before con-
tinuing, we will call EV the total energy of the magnetic vortex
configuration, EIN the total energy of the magnetic in-plane con-
figuration, and EOUT the total energy of the magnetic out-plane
configuration. For the vortex configuration, the total energy is gi-
ven by = →E ElimV c S0 . The energy of the magnetic in-plane con-
figuration can be obtained if we consider the magnetization

( )→ → = ^M r M xs , and the magnetic out plane configuration if we
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Fig. 1. Schematic representation of a skyrmion configuration with an uniaxial
perpendicular anisotropy

→
Ka in the nanodot (a). The core, b, and the end-width, c,

sizes of a skyrmion configuration (b).
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