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a b s t r a c t

We studied an Ising ferromagnet on a bipartite square lattice with nearest-neighbor ferromagnetic ex-
change couplings between spin values =S 2i

A and σ = 5/2j
B , next-nearest-neighbor exchange couplings

between spins, =S 2i
A and an average term of single-ion anisotropy for each lattice site. We carried out

Monte Carlo simulations on the planes ( ′ ′)D k T, B and ( ′ ′)J k T, B2 to investigate the influence of exchange
parameters ′J2 and anisotropy of ′D lattice on the critical temperature of the system. The thermal be-
haviors of the sublattice magnetizations, total magnetization and specific heat were investigated. We
found that the critical behavior system depends linearly on the next-nearest-neighbor interaction ′J2 and
for antiferromagnetic exchange interactions the system undergoes reentrant phenomena.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Within the wide range of molecular magnetic materials the
ferromagnetic materials were found which can be characterized
theoretically by appropriate models of mixed spins. These complex
structures have important physical properties that contribute to
technological development. For example, the ferromagnetism
discovered in some diluted magnetic semiconductors and ferro-
magnetic thin films has served for a variety of important
applications in high technology devices [1–5]. Similarly, some
ferromagnetic materials based on graphene (graphene-based,
materials) have been useful in the operation of various spintronic
devices [6–9]. Ferromagnetic and ferrimagnetic systems are com-
putationally modeled through mixed Ising systems, because they
are good “laboratories” for the magnetic analysis of these materi-
als, since they can exhibit many phenomena related with various
applications in the field of thermomagnetic recordings, which are
not observed in simple spin Ising systems [10].

The importance of ferromagnetic systems highlights the pre-
vious research of a variety of theoretical approaches and experi-
mental works, which modeled such structures. Liu et al. studied
the magnetic properties of a mixed spin-3/2 and spin-1 Ising

ferromagnetic system on an expanded FCC lattice in Fe N4 [11], and
Ekiz and Keskin analyzed the magnetic properties of a mixed spin-
1/2 and spin-1 Ising ferromagnetic system with a crystal field in-
teraction in the absence and presence of an external magnetic field
[12]. Using the mean-field approximation with correlated clusters,
Yamamoto analyzed magnetically ferromagnetic systems [13] and
by the theory effective correlated mean-field was studied by the
spin-1/2 Ising ferromagnetic model with nearest-neighbor inter-
actions on a square lattice [14]. Also the magnetic properties of the
Ising ferromagnetic/antiferromagnetic superlattice were char-
acterized, which is composed of a spin-1/2 ferromagnetic mono-
layer and a spin-1 antiferromagnetic monolayer [15]. Žukovič and
Bobák analyzed the critical properties of an Ising bilayer spin
system and mixed spin-1/2 and spin-1 Ising ferromagnets, in tri-
angular lattices antiferromagnetic and ferromagnetic coupled to
ferromagnetic exchange interaction [16,17]. Also these are note-
worthy studies of the ferromagnetic–paramagnetic phase transi-
tion in the ferromagnetic classical and quantum thin films [18] and
the magnetic properties of an antiferromagnetic surface coupled
ferromagnetically to a ferromagnetic material [19]. For some
layered mixed spin Ising systems, the structural and magnetic
properties of the magnetic thin films have been studied experi-
mentally, such as surface magnetoelastic coupling and surface
magnetic anisotropy [20–23]. Likewise, for Ising ferromagnetic
thin film systems the dynamic phase transition properties by
means of detailed Monte Carlo simulations and effective-field
theory with correlations [24–26] have been analyzed, showing
interesting behavior which includes triple point and isolated
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critical point, tricritical points and first- and second-order phase
transitions [27]. No less interesting is the study of the
short-range ferromagnetic order in perovskite manganite
La Er Ba Mn Fe O0.62 0.05 0.33 0.95 0.05 3, using dc magnetometry in the vici-
nity of paramagnetic to ferromagnetic second order phase transi-
tion [28].

Ferromagnetic and ferrimagnetic nanostructures have also
been the subject of research through the use of mixed spin con-
figurations and the interest in its study is due to many peculiar
physical properties compared with those in bulk materials and
potential technological applications in information storage devices
[29,30], permanent magnets [31], environmental remediation [32]
and biomedical applications [33]. For example, by using the dou-
ble-time Green's function method, Mi et al. investigated the effect
of magnetic spin correlation on the thermodynamic properties of
Heisenberg ferromagnetic single-walled nanotubes [34] and ex-
perimentally it has been possible to synthesize some nanomater-
ials and analyze their magnetic properties, as in the case of
magnetic nanowires Co–Cu [35], −Ga Cu Nx x1 [36] and Fe3O4 [37].
Previous works on the analysis of ferro- and ferrimagnetic Ising
systems include the use of spin configurations in square lattices
with next-nearest and next-nearest-neighbor interactions and
crystal and external fields [38–42].

In this theoretical work, we analyzed a Ising ferromagnet
structured on a square lattice with spins =S 2i

A and σ = 5/2j
B ,

considering ferromagnetic couplings next-nearest-neighbor be-
tween spins type S and crystal field interactions. This model has
been used as the prototype of certain molecular-based magnetic
materials. For example, the model properly represents the com-
pound AFeIIFeIII(C2O4)3, A¼N(n-CnH2nþ1)4, n¼3–5, where FeII¼2
and FeIII¼5/2 [43]. Through Monte Carlo simulations and mean
field approximations of the Hamiltonian, this model has served for
the understanding of a rich variety of thermomagnetic phenom-
ena, such as critical and compensation temperatures obtained
with different single-ion anisotropies [44], magnetic hysteresis
cycles on a Bethe lattice for different values of exchange interac-
tions, crystal field and sizes [45], thermal total magnetization and
sublattice magnetizations with different exchange interactions,
external magnetic fields and temperatures on a Bethe lattice [46],
first and second order phase transition, tricritical points and
compensation points on a honeycomb lattice in a longitudinal
magnetic field [47], first order phase transitions due to the effects
of two single ion anisotropies on a honeycomb lattice when the
temperature increases [48], compensation phenomenon by the
effect of a single-ion anisotropy and an interlayer interaction on a
layered honeycomb lattice [49], and the existence and location of
compensation points due to the anisotropy of the mixture of spins
( )2, 5/2 [50].

As interesting as the previous investigations on spins model
( )2, 5/2 are those made on its dynamic magnetic properties. By
using dynamic mean-field calculations Ertaş extended the study of
dynamic phase transition temperatures, the dynamic compensa-
tion points and the dynamic phase diagrams of the model, adding
the dynamic hysteresis behaviors on a hexagonal lattice in an os-
cillating magnetic field [51]. Similarly, in the analysis of the
nonequilibrium magnetic properties in the presence of a time-
varying magnetic field, within the effective-field theory, Ertaş et al
found the dynamic tricritical and reentrant behaviors, the thermal
behavior of the dynamic magnetizations, the hysteresis loop area
and dynamic correlation of the model [52]. Additionally, for a bi-
layer square lattice spins 2 and 5/2 in the presence of a time-de-
pendent oscillating external magnetic field, the time variations of
average magnetizations and the temperature dependence of the
dynamic magnetizations [53], as well as the effects of the anti-
ferromagnetic/antiferromagnetic (AFM/AFM) interactions on the

critical behavior of the system [54], were investigated, Also is
noteworthy the use of repulsive biquadratic coupling and Glauber
dynamic approach in the calculations multicritical dynamic phase
diagrams and dynamic hysteresis loops of the model [55].

The outline of this work is as follows. In Section 2 we define the
model and present the Monte Carlo method. The effects of ex-
change interaction next-nearest-neighbors and single-ion aniso-
tropy on the phase diagrams are discussed in Section 3. Finally,
Section 4 is devoted to brief conclusions.

2. Model and Monte Carlo simulation

The model studied is a mixed Ising ferromagnet with spins
2 and 5/2, alternating on a square lattice of side L¼80. The in-
teraction Hamiltonian of the system is defined as:
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where Si
A¼± ±2, 1, 0 and sj

B¼± ± ±5/2, 3/2, 1/2 are the spins on
the sites of the sublattices A and B, respectively. J1 is the exchange
interaction between pairs of spins to nearest neighbors, J2 is the
exchange parameter between pairs of spins next nearest neighbors
of the sublattice A, and D is the crystal field, which cause aniso-
tropy of the system. The first sum is performed over all pairs of
spins with nearest neighbor interaction, i.e., between sites with
spins =S 2i

A and σ = 5/2j
B , the second sum runs over all pairs of

spins with next nearest neighbors interaction of spins Si
A, and

sums ∑i and ∑j are performed on all sites of spins of the sub-
lattices A and B, respectively. We choose a ferromagnetic coupling
to nearest neighbors, >J 01 , and we take periodic boundary con-
ditions. All variables in the Hamiltonian are in units of energy.

The simulation of the model is carried out by the Monte Carlo
method, generating states randomly by a heatbath algorithm, de-
scribed below. We choose a spin at random, and calculate the
energy difference ΔEij and the transition probability β( − Δ )Eexp ij

associated with each possible change. Then, whether the spin
changes its value is considered, generating a random number θ in
the interval ( ∑ )P0, i , where ∑ Pi represents the sum of transition
probabilities. The data are generated with ×5 104 Monte Carlo
steps per site after discarding the first 104 steps per site to reach
equilibrium of the system. Error calculation is estimated using the
method of blocks, where the sample L-size is divided into nb
blocks of length =L L n/b b. Thus, the errors are calculated taking the
averages of the blocks instead of the original measurements. Error
bars are calculated by grouping all the mensurations in 10 blocks
and taking the standard deviation [56].

The magnetization per site of the sublattices (MA, MB), and the
total magnetization per spin, MT, is defined as:
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Defining β = k T1/ B , we calculate the specific heat per site (C),
by the expression:
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