
Influence of convective conditions on three dimensional mixed
convective hydromagnetic boundary layer flow of Casson nanofluid

A. Rauf a,n, M.K. Siddiq b, F.M. Abbasi c, M.A. Meraj a, M. Ashraf b, S.A. Shehzad a

a Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000, Pakistan
b Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000, Pakistan
c Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000, Pakistan

a r t i c l e i n f o

Article history:
Received 12 February 2016
Received in revised form
20 April 2016
Accepted 27 April 2016
Available online 6 May 2016

Keywords:
Three-dimensional flow
MHD
Porous medium
Nanoparticles
Thermal radiation

a b s t r a c t

The present work deals with the steady laminar three-dimensional mixed convective magnetohy-
drodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A
uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to
convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions
are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to
obtain the results of velocity, temperature and concentration fields. The physical dimensionless para-
meters are discussed through tables and graphs.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays researchers are curious to discuss the fluid flow
problems over stretching surfaces. Such flows have applications
in paper industry, plastic production, textiles, polymer and metal
sheets [1–5]. Heat transfer phenomenon with convective
boundary conditions is of much more interest due to convection
in hot wiring, nuclear plants, frictionless bearing and gas turbine
engines etc. Tamayol and Bahrami [6] investigated that the por-
ous materials can be used to enhance heat transfer rate from the
stretching surfaces. One can find an admirable literature work
in [7–9].

Several biological fluids vary their flow prosperities under the
application of applied shear force and therefore show non-New-
tonian behavior. One of best fit model among non-Newtonian
fluids is Casson fluid model due to its thinning characteristics [10].
Mukhopadhyay [11] mentioned that for different materials Casson
model is more useful than viscoplastic model. Casson model has a
property of yield stress. Therefore the model can be treated like
solid if the yield stress is larger than the shear stress for example
drilling operations and metallurgy. If the yield stress is less than
the shear stress, the model behaves like liquid and can be ap-
plicable to blood, molten chocolate and crude oil. Much useful
information can be found in the literature [12,13].

Nanoparticles dispersion in the base fluid known as nanofluids.
A contribution of nanoparticles in the base fluid increases the
thermal conductivity [14]. Moreover the involvement of less that
1% of nanoparticles in the base fluid almost doubles the thermal
conductivity rate [15]. Such enhancement then shows a stable
behavior and creates no additional problems like erosion, sedi-
mentation, pressure drop etc. Nanoparticles are useful in nuclear
reactors, military systems, electronics, super computers, transfor-
mer cooling, biomedicine and extensive range of applications can
be found in [16–18]. In recent years energy efficiency is a very busy
subject in terms of enhancement in the thermal conductivity.
Therefore, the thermal scientists are paying much attention to
solar power utilization to find the new energy resources all over
the globe. Solar system is considered as one of the best source of
energy generation with less amount of environment effect [19–21].

Magnetohydrodynamics (MHD) has key impact in physics,
chemistry, industry and engineering. MHD has significance in metal
coating, crude oil purification, optical grating, electromagnetic pumps
and much more. Furthermore the magneto nanofluid involves both
the properties of magnetic and liquid. Nanoparticles show great sig-
nificance in blood flow analysis, loudspeaker's construction, hy-
perthermia, kidney transplant etc. Pal et al. [22] solved numerical
problem of radiative boundary layer flow of nanofluid passed through
a stretching/shrinking sheet embedded in a porous medium using
Runge–Kutta–Fehlberg technique. Pal and Mandal [23,24] also studied
the above mentioned problem with addition of mixed convection,
viscous dissipation and mass transfer effects. Hakeem et al. [25] ex-
plored the flow and heat transfer characteristics of MHD stagnation
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point flow of nanofluid over a stretching/shrinking surface using
analytical and numerical technique. Hayat et al. [26] presented a
mathematical model for the flow problem of three-dimensional flow
of Maxwell nanofluid over a sheet with newly introduced zero mass
flux nanoparticle condition. The obtained boundary value problem
was solved using an analytical technique based on Homotopy Ana-
lysis Method (HAM). Shehzad et al. [27] analyzed analytical problem
of MHD three-dimensional boundary layer flow of Oldroyd-B nano-
fluid over a stretching surface with convective boundary conditions.
Mahanta and Shaw [28] examined the flow characteristics of MHD
three-dimensional flow of Casson fluid over a stretching surface with
convective heat condition using Spectral Relaxation Method (SRM).
Radiation and chemical reaction effects using convective boundary
conditions for problem of three-dimensional boundary layer flow of
Casson fluid over a stretching sheet embedded in a porous medium
were discussed numerically by Sulochana et al. [29]. Wahiduzzaman
et al. [30] analyzed a numerical problem of boundary layer flow of
three-dimensional Casson fluid flow over a non-isothermal porous
surface. Hayat et al. [31] presented analytical solution of the problem
of mixed convective Casson nanofluid with convective conditions
over a stretching sheet. Lin et al. [32] investigated the pseudo-plastic
nanofluid flow over a finite thin film in presence of heat generation
and applied magnetic field. Zhang et al. [33] reported the MHD flow
of viscous nanoliquid in a porous medium under variable heat flux
and thermal radiation effects.

The current work aims to present a comprehensive numerical
study of the problem of three dimensional steady laminar mixed
convective MHD flow of Casson nanofluid with radiation, Joule
heating, heat source/sink and chemical reaction of first order over
a stretchable sheet immersed in a porous medium. Convective
boundary conditions on temperature are taken into account. Si-
milarity transformation is utilized to covert non-liner partial dif-
ferential equations into ordinary ones. The results are obtained
using Runge–Kutta–Fehlberg fourth-fifth order (RFK45) technique.

2. Problem formulation

We consider laminar steady three dimensional boundary layer
flow of Casson nanofluid over a linear stretching sheet at =z 0.
The sheet is stretched along x and y-axis with velocity =u ax and

=v by respectively and flow takes place in domain >z 0. A uni-
form transverse magnetic field with strength Bo is applied in the
normal direction to fluid flow. We assume that the induced mag-
netic field is negligible and the electric field is neglected [28]. The
sheet is heated with the interaction of hot fluid with temperature
Tf . The free stream is taken at a constant ambient fluid tempera-
ture ∞T with > ∞T Tf and concentration ∞C .

The rheological equation of state for an isotropic flow of a
Casson fluid [29–30]:
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where π = e ei j i j and ei j stands for the ( )i j, th component of de-
formation rate, π is the product of component of deformation rate
with itself, πc the critical value of this product based on the non-
Newtonian fluid, μB the plastic dynamic viscosity of the Casson
fluid and pz the yield stress of the fluid.

The fluid flow model in view of above mentioned assumptions
is given below:
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where u, v and w are the velocity components in x, y and z-di-
rections respectively, υ is the kinematic viscosity, β is the Casson
parameter, σe is the electrical conductivity of the fluid, ρf is the
density, μ is the viscosity, ϕ1 is the porosity and k1 is the perme-
ability of the porous medium, K0 is the thermal conductivity of the
fluid, τ = ρ

ρ
( )
( )

c

c
p

f
is the ratio of nano-particle heat capacity and the

base fluid heat capacity, DB is the Brownian diffusion coefficient
and DT is the thermophoretic diffusion coefficient, cp is the specific
heat capacity, σ is the Stephens Boltzmann constant, *k is the
absorption coefficient, Q is uniform volumetric rate of heat ab-
sorption/generation and K is the chemical reaction parameter.

The boundary conditions for the velocity components, tem-
perature and concentration are:
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where >a b, 0 corresponds to the sheet stretching, kf is the
thermal conductivity, h1 and h2 are the heat and mass transfer
coefficients. To have velocity, temperature and concentration
fields, we introduce the following similarity transformations:
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where =c b
a
is the velocity ratio along y and x-directions. Using (8)

into (2)–(7), we note that the continuity equation is identically
satisfied. The (Eqs. (3)–6) take the following dimensionless form:
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