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a b s t r a c t

In this paper we present a method to accurately compute the energy of the magnetostatic interaction
between linearly (or uniformly, as a special case) magnetized polyhedrons. The method has applications
in finite element micromagnetics, or more generally in computing the magnetostatic interaction when
the magnetization is represented using the finite element method (FEM).

The magnetostatic energy is described by a six-fold integral that is singular when the interaction
regions overlap, making direct numerical evaluation problematic. To resolve the singularity, we evaluate
four of the six iterated integrals analytically resulting in a 2d integral over the surface of a polyhedron,
which is nonsingular and can be integrated numerically. This provides a more accurate and efficient way
of computing the magnetostatic energy integral compared to existing approaches.

The method was developed to facilitate the evaluation of the demagnetizing interaction between
neighbouring elements in finite-element micromagnetics and provides a possibility to compute the
demagnetizing field using efficient fast multipole or tree code algorithms.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the continuum form of the Landau–Lifshitz–Gilbert equation,
the effective field ( )H reff is the functional derivative of the total
energy functional ( )E M with respect to the magnetization ( )M r
[1]:
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In numerical micromagnetics, the dynamics of magnetization
are described by the semi-discretized Landau–Lifshitz–Gilbert
equation, in which the motion of magnetization is computed from
the discretized effective field. It is desirable to preserve the rela-
tion (1) between effective field and total energy in the semi-dis-
cretized formulation [2] – if (1) holds for the discrete system, then
the total energy will decrease in the simulation, simplifying the
use of energy-based criteria for the control of the simulation or the
search for an equilibrium.

In order to preserve (1), the effective field has to be computed
from the discretized total energy function using the corresponding
discrete counterpart to the functional derivative δ δ ( )E M r/ . For the
exchange, anisotropy, and Zeeman terms this is usually

straightforward, however for the demagnetizing field it is more
difficult. In finite difference (FD) micromagnetics, it can be
achieved by computing the total demagnetizing energy of the
system using the analytical expression [3–6] for the demagnetizing
tensor, and then differentiating with respect to the degrees of
freedom [7,2]. However, in finite element (FE) micromagnetics, the
demagnetizing field is usually computed using the FEM/BEM
method [8,9] where the field is derived from the magnetostatic
potential, and the energy is not computed exactly.

It is therefore desirable to be able to accurately and efficiently
compute the total magnetostatic energy of a system represented
by a set of polyhedral elements, with magnetization linear inside
each polyhedron (as in the FE method with linear Lagrange ele-
ments). The total energy of the system is the sum of pairwise in-
teractions between the polyhedrons and in this paper we describe
how to compute this pairwise interaction.

Given two interacting magnetized polyhedrons τ and τ′ with
arbitrary magnetizations ( )M r and ′( )M r , the energy τ τ↔ ′E of the
magnetostatic interaction between them is:
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is the de-

magnetizing (stray) field produced by the polyhedron τ′.
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The straightforward approach of numerically computing the in-
tegral (3) is problematic because it requires explicit integration over a
6-dimensional region of space; additionally, when the polyhedrons
overlap or coincide, the integrand is singular and regular integration
methods cannot be applied. Many analytical results are available for
similar 3-fold integrals arising during the calculation of the field [10–
14]. However, none of the formulas can be easily adapted to this
more complex 6d case. In [15] a method is developed for removing
the singularity in (3) that can be applied to the uniform magneti-
zation case but does not generalize easily to the linear magnetization
case. A Fourier-transform method has been devised for the compu-
tation of magnetostatic energy [16,17], however for the case in-
vestigated in this paper, the required 3d numerical integration in the
Fourier space is still somewhat impractical.

The rest of the paper describes the proposed method for the
computation of this integral. The main approach is to analytically
perform 4 out of 6 iterated integrals resulting in a 2d surface in-
tegral that is nonsingular and can be evaluated numerically using
standard methods. This semi-analytical approach is similar to [18];
the use of notation and vector analysis in the analytical derivation
is similar to the techniques in [13,14].

2. Formulation of the problem

For the purposes of computation, an arbitrary linear vector-
valued function in space ( )M r can be represented by a 3�4 matrix
∥ ∥ ( ) = ∥ ∥·( )M M r r rM r: 1, , ,ij ij x y z

T . However, performing analytical
calculations for this general case is quite inconvenient; instead we
only consider vector-valued linear functions of the form ( )A r M
where ( )A r is a scalar linear function and M is a constant vector.
For the common case of a tetrahedral element, an arbitrary linear
vector-valued function ( )M r can be reconstructed from the vertex
values = … ( ) = ∑ ( )=i A rM M r M, 1 4:i i i i1

4 , where Ai(r) are the
shape functions of the tetrahedron.

We perform the computations for a pair of interacting linearly
magnetized polyhedrons τ and τ′ with magnetizations ( )A r M and

( ) ′B r M , where M and ′M are constant magnetization vectors and
( )A r , ( )B r are dimensionless linear functions in space (Fig. 1). From

(3), the energy τ τ↔ ′E of the magnetostatic interaction between the
polyhedrons is = · · ′τ τ

μ
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0 , where N is the symmetric 3�3

“demagnetizing tensor”
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The goal of this paper is to compute this sixfold integral given
the coordinates of the vertices of τ and τ′ and the coefficients of
the linear functions ( )A r and ( )B r . When the polyhedrons τ and τ′
are separated, the integral can be computed numerically, however
when the polyhedrons overlap or coincide, the integrand is sin-
gular and standard numerical integration is inaccurate.

To deal with this issue, we analytically reduce the double vo-
lume integral (4) to a double surface integral, then evaluate the
surface integral over r analytically, and the second surface integral
over ′r numerically. This procedure is similar to the one employed
in [18] — the four analytical steps result in a surface integral with
a bounded integrand that can be integrated numerically with
reasonable accuracy and efficiency.

A short notice on units: the demagnetizing tensor commonly
used in finite difference micromagnetics [4] is dimensionless,
however the tensor N computed in this paper (4) has units of
volume.

3. Method

The analytical derivation proceeds in the following three steps:

� transform the double volume integral (4) to a double surface
integral using Gauss's theorem, removing linear factors via
integration by parts (Section 4),

� express the integrand for the outer surface integral over ′r as a
linear combination of primitive terms (Section 5),

∫τ( ′) =
| | ( )τ∂ − ′

I dsr
R

;
1

5r
0

∫τ( ′) =
| | ( )τ∂ − ′

dsI r
R
R

; 6r
1

∫τ( ′) =
| | ( )τ∂ − ′

⊗
dsI r

R
R

; 7r
2

2

where τ∂ is the polygonal surface of the polyhedron τ, τ∂ − ′r is
the same surface shifted by ′r according to the substitution

= − ′R r r , and ⊗ denotes tensor multiplication (i.e. ⊗R 2 is a
symmetric tensor of rank 2).

� analytically integrate the primitive terms Ik over each polygonal
surface, again by applying integration by parts, Stokes' theorem
(for integration over a surface), and gradient theorem (for in-
tegration over a line), Section 5.1.

Eq. (16) derived in step 2 (see Section 5) together with the
corresponding analytical formulas for the primitive terms Ik form
the main result of the paper.

3.1. Auxiliary functions

The derivation of the analytical formulas for Ik requires the
computation of a number of auxiliary functions:
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The relation between the formulas for these functions is shown
below (an arrow indicates that the formula at the source depends
on the formula at the target):

Fig. 1. The energy τ τ↔ ′E of the magnetostatic interaction between polyhedrons τ

and τ′ with magnetizations ( )A r M and ( ) ′B r M , where M and ′M are constant
magnetization vectors and ( )A r , ( )B r are dimensionless linear functions in space.
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