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a b s t r a c t

Lateral spin devices are an important concept in nowadays all-metallic spintronic devices. One of the key
problems is to obtain large spin injection and detection efficiency. Several concepts has been envisaged,
such as to use half-metallic ferromagnetic electrodes or spin-polarized interface barriers. Within this
work, we address the optimization of spin devices (namely optimization of spin current density, spin
current and spin accumulation) based on adjustment of the geometry (dimensions) of the lateral device,
material selection of spin conductors, jointly with optimization of the interface resistance.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spintronics is an important branch of magnetism, with the aim
to extend possibilities of current electronics based on charge
transfer. As arises from technological limitations, the devices em-
ploying spin current are usually build in perpendicular (vertical) or
lateral (planar) geometries. In most cases, those devices provide
spin current generation, spin propagation, potentially spin ma-
nipulation, and finally spin detection. Lateral spin transport pro-
vides a large variety of possible geometries and materials, being
used to investigate a variety of spin-based phenomena. For ex-
ample, they have been used to study spin-Hall effect and inverse
spin-Hall effect [1,2], spin pumping [3], spin-transfer [4], Hanle
effect [5,6], etc. Also, the employed materials range from 3d FM
electrodes (e.g. Co [7]) to half-metallic electrodes based on Heusler
compounds [8,9], whereas spin-conducting material is either
metal (usually Cu or Al), semiconductor [6,10], molecular material
[11] or graphene [12].

As spin injection and detection is a crucial feature in spin-
tronics, large effort is taken to increase spin current injection or
detection efficiency. This effort is driven in two principal direc-
tions. First direction is to increase spin polarization of the FM
electrodes, such as using half-metals as FM electrodes [13]. Second
approach is to overcome conductivity mismatch between FM
electrode and spin conductor, which causes that spin polarization

in bulk FM electrode is not transferred into non-FM spin conductor
[14]. One approach to overcome conductivity mismatch is to em-
ploy tunnel barrier, either built as a thin film of non-conduction
material (e.g. MgO) [15], or by using Schottky barrier in case of
spin injection into semiconductors [16]. Although often omitted,
there is another tricky way to overcome conductivity mismatch
based on modified geometry of the lateral spin structure. For ex-
ample, reduction of spin-injection cross-section area increases
spin injection efficiency [17], selection of adjacent material to FM
lead can reduce critical switching current [18] or magnetoresis-
tance in lateral device is enhanced by confining laterally the spin
accumulation [19].

Within this paper we present theoretical investigation of op-
timization of spin injection and spin detection in Py/Cu lateral
structure, as a function of various cross-sectional areas, and both
with and without tunnel barriers between Py/Cu interfaces. First,
we derive analytical expression of spin current and spin potentials
based on Valet–Fert 1D model [20]. Then, we discuss which geo-
metrical measures provide optimization of spin accumulation,
injected spin current or injected spin current density.

2. Valet–Fert model

The spin accumulation and the spin current density in hybrid
nanostructures are described by Valet–Fert model, which in one-
dimensional case has the following form [20]:
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where μ↑ ↓/ are the spin-up and spin-down electrochemical po-
tentials, their difference μ μ μΔ = −↑ ↓ is called the spin accumula-
tion. ↑ ↓j / are the spin-up and spin-down current densities, λ the
spin-diffusion length and x the lateral dimension. The bulk con-
ductivities of ferromagnetic (F) and non-ferromagnetic
(N) materials write
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where pF is the bulk spin current polarization (later called just spin
polarization), defined as σ σ σ σ= ( − ) ( + )↑ ↓ ↑ ↓p /F F F F F .

The spin resistances of N and F materials are defined as [21]
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where SN and SF are the cross-sectional areas of N and F materials,
respectively, and λN, λF are the spin-diffusion lengths in both
materials. Note that the spin resistance for F is defined differently
than in Takahashi and Maekawa [21] as our definition provides
simplified outgoing relations.

Interface resistances for up and down spin channels are defined
as

= ( ∓ ) ( )↑ ↓R R P2 1 8i, / i i

where = ( − ) ( + )↓ ↑ ↑ ↓P R R R R/i i, i, i, i, is the spin polarization of the
interface and Ri the interface resistance. Note that using this de-
finition, the total resistance of the interface is
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By solving Eqs. (1)–(3) in a 1D wire the expressions for μ↑ ↓/ and

↑ ↓j / are
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where = +↑ ↓j j jch is the charge current density. The positive cur-
rent direction is towards the positive x direction. The energy
coefficients c d, are the amplitudes of an exponential damping of
μ↑ ↓/ . The electrochemical potential μ̃ provides an absolute shift of
μ↑ ↓/ being μ σ μ σ μ σ˜ = ( + )↑ ↑ ↓ ↓ / . The values of μ̃ c d, , for each 1D wire
(i.e. each branch of the structure) are determined by the following
boundary conditions: everywhere in the structure ∑ =↑ ↓

( ) ( )j S 0i
i i
/

(current conservation) and μ =↑ ↓
( )

↑ ↓consti
/ / (continuity of

electrochemical potential), where (i) denotes the number of a given
branch connected to a given cross-section point. Furthermore, at
the end points of the structure, μ μ=↑ ↓, and the values of currents
are determined by external charge-currents flow and material
polarizations.

The previously described propagation equations and boundary
conditions lead to sets of linear equations with unknown variables
μ̃( )i , ( )c i , ( )d i , μ↑ ↓

( )i
/ , ↑ ↓

( )j i
/ at the end of each wire segment. These sets of

equations were analytically solved, providing expressions for μ↑ ↓
( )i
/ ,

↑ ↓
( )j i
/ in any point of interest.

3. Numerical example of Cu/permalloy (Py) structure

In following, we discuss the spin polarization and the spin ac-
cumulation in various types of lateral spin structures. For those
structures, we also provide numerical examples of spin-electrical
behavior, which are calculated for permalloy (Py) as F and copper
(Cu) as N, at temperature 4 K. Namely, the electrical conductivities
are σ = × Ω− −7.3 10 mF

6 1 1, σ = × Ω− −48.1 10 mN
6 1 1, the spin diffu-

sion lengths are λ = 4.3 nmF and λ = 350 nmN and the spin po-
larization of permalloy is assumed to be =p 0.4F [22–24]. If not
told otherwise, the cross-section of the lateral structure and the
cross-section of the F/N contact are assumed to be 100�100 nm2,
i.e. the cross-section of the conductors and interfaces is

= = = μS S S 0.01 mF N i
2. For these materials and geometry para-

meters, the spin resistances (Eqs. (6) and (7)) of permalloy and
copper are = ΩR 70.1 mF and = ΩR 728 mN , respectively (for

=S SF N). Hence, ⪡R RF N, which corresponds to conductivity mis-
match [14], causing an ineffective spin injection. Note that con-
ductivity mismatch happens for most currently used materials in
the lateral structures. The charge current passing the structure is
I¼1 mA. The parameters of the F/N interface, Ri and Pi, are usually
free parameters in the numerical calculations. Note that for nu-
merical calculations, the value of the interface resistance Ri is
expressed in more common form as an interface specific re-
sistance =AR S Ri i i, where Si is the cross section of the interface. In
following, we use =S Si F , as the spin diffusion length of F, λF, is
usually much smaller than typical lateral dimension of the struc-
ture. Therefore, the spin relaxation in F is basically an interface
effect in the vicinity of the interface and hence the cross-sectional
areas of the interface and of F equals.

All the calculations presented here are within one-dimensional
approximation. Therefore, the actual values of spin current or spin
accumulation can be different, due to potential inhomogeneous
flow of spin current through the device. The inhomogeneous flow
of charge and spin current is expected in following cases: the in-
terface resistance is small, the cross-sectional area of the contact
between F and N is large or the conductivities of F and N in the
lateral nanostructures are different. For example, it was demon-
strated for Py/Cu device (Py thickness 20 nm, Cu thickness 80 nm,
transparent interface) [22] that the spin current is injected from Py
to Cu within 30 nm distance from the Py/Cu edge. The currents'
flows become more homogeneous when large interface resistance
is introduced. The inhomogeneous flow can be approximately
described in the one-dimensional approximation by introducing
effective cross-section of the interface, defined as a cross-section
through which most of the currents' flows.

4. Simple F/N interface

We start the discussion by a simple F/N interface, as sketched in
Fig. 1(a). Applying boundary conditions at the interface, the ana-
lytical expressions of the spin polarizations and the spin
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