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a b s t r a c t

A number of recent experimental works have shown that the dynamics of a single spin torque oscillator
can exhibit complex behavior that stems from interactions between two or more modes of the oscillator,
such as observed mode-hopping or mode coexistence. There has been some initial work indicating how
the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several
modes and the interactions between them. In the present work, we rigorously derive such a theory
starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-
order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is ne-
cessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired
temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift
with temperature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the prediction of spin transfer torque (STT) in 1996 [1–3],
whereby a spin-polarized dc current exerts a torque on the local
magnetization order parameter, there has been a wealth of theo-
retical and experimental investigations of phenomena driven by
STT. One particular manifestation of STT is the spin torque oscil-
lator (STO). The STO is typically realized in MgO magnetic tunnel
junctions [4–8], or metallic nanocontacts [9–11]; in both of these, a
dc current is driven perpendicularly to two thin stacked magnetic
layers, in one of which the magnetization is relatively free to ro-
tate, while in the other the magnetization is held fixed. With the
relative magnetization directions and current direction arranged
appropriately, STT pumps energy into the STO, and by adjusting
the current magnitude, this pumping can be made to cancel the
intrinsic dissipative processes in the system. This gives rise to al-
most undamped oscillations with a very small linewidth. As STOs
are potentially useful in technological applications, such as fre-
quency generators or modulators, it is both of practical as well as

of fundamental interest to understand the physics of the STO auto-
oscillations. Slavin and co-workers [12–15] put forth a compre-
hensive theory valid for single-mode STOs, that is, STOs for which
one mode is relevant and is excited (this is when a macro-spin
model is readily applicable). Some striking features of this theory
are the effects induced by the inherent nonlinearity of the STOs,
for example the behavior of the oscillator linewidth below and
above threshold current [13–15] at which STT pumping first can-
cels damping and auto-oscillations are achieved.

Recently, there have been several experiments demonstrating
the effects of multi-mode STOs, for example mode co-existence
and mode-hopping [16–23]. Clearly, the interactions between
several oscillator modes cannot be described by the single-mode
theory but require a theory that describes the interactions be-
tween collective modes, and how the behavior of the collective
modes is modified as a consequence of those interactions. de
Aguiar et al. [24] considered a two-mode system with in-plane
translational invariance and arrived at coupled equations similar
to those of the Lotka–Volterra biological model. However, de
Aguiar et al. argued that in the driven two-mode system, one
mode will get extinguished and only one mode survives. This is
obviously not consistent with many experimental observations of
mode-hopping and mode-coexistence. A multi-mode theory was
first outlined by Muduli et al. [22,8,25]. In particular, these authors
argued that the equations describing two coupled modes could be
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mapped onto a driven dynamical system used to describe semi-
conductor ring lasers [26,27]. It is known that in the presence of
thermal noise, those equations exhibit mode-hopping in certain
regions of parameter space [27]. A key observation here was that
for mode-hopping to be present in a two-mode system, the time
derivative of the slowly varying amplitude of one mode must be
coupled linearly to the amplitude of the other mode (a so-called
“backscattering” term). Also, the authors gave some general argu-
ment for why mode-hopping is a minimum when the free layer
magnetization is anti-parallel to that of the fixed layer, and then
increases as the orientation moves away from anti-parallel [22].
Later, Iacocca et al. [28] also showed that the effective multi-mode
theory described very well observed line-width broadening near
mode crossings [8], and Sharma et al. [29] observed a f1/ -type
frequency noise spectrum in magnetic tunnel junction STOs,
which was attributed to mode hopping. Iacocca et al. [30] also
presented experimental results that identified two mode coupling
mechanisms: magnon-mediated scattering, and intermode inter-
actions consistent with preliminary results of the present work
[31].

With the mounting experimental observations that appear to
be consistent with the multi-mode theory of Muduli et al. [22], it is
of interest to present a rigorous derivation of the equations for
coupled modes from first principles (the micromagnetic Landau–
Lifshitz–Gilbert equation), and to analyze the ensuing behavior of
the system. That is one purpose of the present work. We will show
how the linear backscattering term arises naturally in a system
with a small number, e.g., two, of dominant modes but in which
there is a bath of many modes. This bath provides effective in-
teractions between the dominant modes when the bath is in-
tegrated out and the equations projected onto the subspace of
dominant modes. We will also derive and discuss some con-
sequences of this theory. The backscattering terms have a direct
temperature dependence as they involve thermal populations of
modes. This has a consequence of a temperature dependence of
the magnitude of the backscattering terms, as we will explicitly
show in an example, which leads to a temperature dependence of
the linewidths of the modes [28]. The temperature dependence of
the backscattering terms also has a more subtle consequence in
that manifold of orbits and fixed points will shift as a function of
temperature, which will change the location or height of saddle
points that are crossed during mode-hopping.

While the algebra may at times seem a bit tedious, we are
writing out some of the expressions explicitly to point out sym-
metries and physical consequences. We will also present some
examples to illustrate how mode hopping can arise from mode
interactions. Our results will show that there is always some small
possibility of mode hopping, consistent with experimental ob-
servations [22]. However, the backscattering term that leads to
mode hopping grows with the appearance of nutation in the
modes of the system, in which the phase between the dynamical
components of the magnetization motion is not constant across
the magnetic layer. For a system such as the MTJ with an in-plane
magnetic field studied in Ref. [22], we will show how the back-
scattering increases as the external field is rotated away from the
direction of the fixed layer, consistent with experimental ob-
servations [22]. Finally, we note that the method we use here is
based on an expansion in eigenmodes of the linearized con-
servative equations of motion for the magnetization and will
therefore not apply to, e.g., systems that exhibit a localized bullet
mode [32].

2. Methods

2.1. Micromagnetic equations

Our starting point is a soft ferromagnetic system, for example a
thin film. We describe the local magnetization by a director m̂i for
discrete sites = …i N1, 2, , with | ^ | =m 1i . The LLG equation in-
cluding damping and spin torque is then
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Here, γ is the gyromagnetic ratio, α⪡1 the dimensionless damping,

aJ the effective field due to STT, and M̂ the (uniform) magnetiza-
tion direction of the fixed layer; the effective field H ieff, includes
exchange, demagnetizing fields, and an external applied field

= ^ + ^ + ^H x H y H zH x y zext ext, ext, ext, . We will not here include Oersted
fields generated by the currents in the system as they are not
important for the present analysis, although it has been shown
that these fields play an important role in the interactions be-
tween certain modes in nano-contact STOs [23]. We are also ig-
noring the so-called field-like, or perpendicular, spin torque [33]
as this can be absorbed into the definition of the external field. We
shall combine exchange and demagnetizing fields into a single
field Hd i, and note that in general we can write
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where δ′ ϵDi i, ; , is a generalized demagnetizing tensor that includes
near-neighbor exchange. We shall also assume that the magne-
tocrystalline anisotropy is negligible, and we take the x̂-axis to be
along the average equilibrium magnetization in the free layer.
Without loss of generality, we can take the ŷ-axis also to be in the
^′^′x y -plane. Fig. 1 illustrates the geometry of the system. In general,
the demagnetizing tensor will have all off-diagonal terms non-
zero in the representation of the xyz coordinate system. However,
for some specific examples such as magnetic tunnel junctions with
an in-plane external field, or systems with a large π( ⪢ )H M4 Sext
external field perpendicular to the planes of the magnetic layers,
the demagnetizing tensor can be taken to be (approximately) di-
agonal in the xyz coordinate system. In such cases, if the external
field is in the ^′^′x z -plane, the only nonzero off-diagonal elements
are = ′D Di i x z i i z x, ;, , , ; , . Fig. 2 depicts the equilibrium magnetization in
the free layer of a circular magnetic tunnel junction STO of dia-
meter =d 240 nm obtained from micromagnetic simulations with
parameters appropriate for the systems in Ref. [34]. In the figure,
the pinned layer and reference layer magnetizations are approxi-
mately (these layers are also treated micromagnetically) at 45° and
�135° degrees to the x-axis, and there is an external field of
magnitude 450 Oe applied in the xy-plane at 85° to the x-axis (in
an actual magnetic tunnel junction, there are three magnetic

Fig. 1. Geometry used in this work. The FL is in the ^′^′x y -plane; the x̂-axis is along
the FL magnetization equilibrium direction, which may point out of the ^′^′x y -plane
because of the applied field Hext. The projection of the x̂-axis on the ^′^′x y -plane is
rotated an angle ϕ from the ^′x -axis. The ŷ-axis is in the ^′^′x y -plane, and the ẑ -axis is
rotated an angle θ from the ^′z -axis.
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